FIRST AND SECOND REPORT

ON THE

NOXIOUS,

BENEFICIAL AND OTHER

INSECTS,

OF THE

STATE OF NEW-YORK.

MADE TO THE STATE AGRICULTURAL SOCIETY, PURSUANT TO AN APPROPRIATION FOR THIS PURPOSE FROM THE LEGISLATURE OF THE STATE.

BY ASA FITCH, M. D.,
ENTOMOLOGIST OF THE N. Y. STATE AGRICULTURAL SOCIETY; MEMBER OF THE ENTOMOLOGICAL SOCIETY OF FRANCE, OF PENNSYLVANIA, ETC.

ALBANY:
C. VAN BENTHUYSEN, PRINTER TO THE LEGISLATURE.
No. 407 Broadway.
1856.
Entered according to Act of Congress, October 8th, 1856, in the Clerk's Office of the Northern District of New-York.
IN ASSEMBLY, APR. 3, 1856.

REPORT

Of Asa Fitch, M. D., on the Noxious, Beneficial, and other Insects of the State of New-York.

I herewith submit a Report upon the Noxious and other Insects of the State of New-York, particularly such as are injurious to fruit trees, pursuant to your instructions, delivered to me in May last. I also present specimens of the several insects herein described, and of the vegetation as depredated upon by them, from which drawings may be taken for illustrating this report, and which are thereafter to be deposited in the Entomological department of the Museum of the Society.

It has been common in treatises upon economical entomology, to arrange the several species in their scientific order. Although this mode of arrangement has its advantages, it presupposes such an acquaintance with scientific entomology as but very few individuals in our country possess. A person who meets with a worm, say, mining a cavity in the leaves of the apple tree, and consuming their parenchyma, knows not whether that worm is the larva of a Coleopterous, a Lepidopterous, or some other Order of insects, and consequently is at a loss in what part of a work upon noxious insects, arranged in the usual manner, to look for an account of it. Even an experienced entomologist would be equally embarrassed in the case we have supposed, and would be
INTRODUCTION.

unable to decide whether such worm was a leaf-mining moth of the Order Lepidoptera, or a prickly beetle (*Hispa*) of the Order Coleoptera—so closely, according to accounts, do the larvae of these widely separated groups resemble each other. I have therefore pursued a different mode of arrangement. As the insects which infest our fruit trees occupy the chief part of this report, they are first considered. Commencing with those which occur upon the Apple tree, I speak in succession of those which affect the root, the trunk, the twigs, the leaves, the flowers, and the fruit. In the same order, insects which occur upon the Pear, the Peach, the Plum, and the Cherry, are successively taken up. From our Fruit trees I pass to some species of much interest which have been examined, infesting our Forest trees, our Field crops, and our Garden vegetables. This mode of arrangement of the several topics will be perfectly intelligible to every reader; and, aided by the brief heading which precedes the account of each species, will enable him to turn at once to any insect which he wishes to find, which is here described.

In a field of such extent, and comprising such a multitude of objects, it will not be expected that the researches of a single season can suffice to bring this subject to anything approaching to completeness. I think it is Saint Pierre who remarks that he had made it a point to examine the several insects which made their appearance upon a particular rose bush in his garden, and at the end of thirty years he continued to find new kinds which he had never seen upon the bush before. And however assiduously one may investigate the history of a particular species during the period of its appearance one season, if he returns to the same insect another year, additional traits in its habits commonly continue to be discovered, equal in importance frequently to those which were first noticed. Those species which I have been able to investigate since I received your instructions, including several which have never been noticed in our country before, will be found fully reported in the following pages. The history of some important depredators upon our American fruit trees, the Plum weevil, for instance, and the Canker worm, which I have not as yet had time and favorable opportunities for examining, I hope to present on a future occasion.
As it is the primary object of this report to diffuse information upon an important topic with which very few are at present conversant, I have throughout endeavored to treat the subject in a plain, familiar manner, avoiding any unnecessary resort to technical language, and using no terms but such as will be found clearly defined in dictionaries which are in every school district in our State. A few words such as antennae, thorax, abdomen, and elytra, which are so common in works upon insects that no one can expect to obtain the slightest acquaintance with this science without becoming familiar with them, I have employed, as it would savor of fastidiousness to substitute in their stead the corresponding English terms of horns or feelers, chest, body and wing-covers, which applied to insects are modified from their common meaning, and the general reader will encounter much the same task in familiarizing himself to this modified signification that he will have in learning the more definite and convenient technical terms and their signification.

Those portions of the report which are designed for perusal only when one has specimens before him of which he is desirous to ascertain the names, are inserted in a type of a smaller size. The dimensions of the several insects, larvæ, &c., are expressed in inches and the fractional parts of an inch, 1.25 thus implying an inch and a quarter, 0.75 seventy-five hundredths, or three-fourths of an inch, &c.

With these explanations I submit to you this report, with the hope that it may aid in rendering this branch of science more known to our citizens and available in adding to their comfort and welfare.

ASA FITCH.

Fitch's Point (East Greenwich, P. O.), March 14, 1855.

P. S. The Legislature having made provisions for a continuance of this work, as another report will be presented the coming year, a number of species which are in a state of forwardness for publication, and which we had contemplated inserting in the present document, are withheld in the crowded state of the Society's volume of Transactions the present year, with the hope that we
shall be able to obtain additional facts to render our account of these species more complete and exact, and also with the anticipation that we shall be able to accompany them with suitable illustrations, which could not be got ready for insertion in the present volume.

August 7, 1855.

[A. F.

[Note.—This report is also published in the "Transactions of the New-York State Agricultural Society," vol. xiv, pp. 705-880.]
INSECTS INFESTING FRUIT TREES.

1. THE APPLE.

AFFECTING THE ROOT.

Wart-like excrescences growing upon the roots, sometimes of an enormous size; containing in their crevices exceedingly minute lice, often accompanied with larger winged ones having their bodies covered with a white cotton-like matter.

Upon the 29th day of October, 1849, I was occupied in setting out a number of young Apple trees which had been brought me from the nursery at Glens Falls, Warren county, when, on the roots of one of these trees, I observed some very singular excrescences. I was conjecturing as to the cause of this remarkable disease, which appeared to be sufficient to destroy the tree, when, nearly concealed in one of the largest excrescences, a woolly Plant-louse was perceived, and on further inspection, a second one was found, similarly secreted—one of these being dead, the other alive. And on examining the crevices of this excrescence with a magnifying glass, they were discovered to be occupied by numerous lice, so minute as to be wholly imperceptible to the naked eye. These, there can scarcely be a doubt, were the young of the larger winged lice, first noticed.

Upon the wing, in groves, late in the autumn, I have captured numerous individuals of this same species, where no apple trees were growing within a half mile. These were probably bred upon the roots of the Thorn or the Shad-bush (*Amelanchier Canadensis*), and it may possibly prove to be the fact that this
insect is not limited to the *Pomace* family, but infests the roots of other deciduous forest and fruit trees.

This affection of the roots of Apple trees has occasionally been noticed in our agricultural periodicals, and various inquiries have been made respecting the insect which occasions them, which inquiries have received no satisfactory answers, for the reason that the insect is a new species, different from any hitherto described in books or known to our nurserymen and fruit growers. A communication from J. Fulton, jr., of Chester county, Pa., in Downing's *Horticulturist*, vol. iii, p. 391, gives additional evidence of this being a common disease over a large extent of our country, and causing great losses to our nurserymen. He says: "The main purpose of my writing is to call attention to an important matter, and to ask for light upon the subject. In taking up trees this fall (1848), I notice that some of the roots will be full of excrescences, or warts, and covered with a minute white, woolly insect; and that some of them find lodgment on the trunks of the trees, in the partly closed wounds made by pruning. As the tree seemed vigorous, I paid little attention to the subject, until another nurseryman called my attention to the subject, and stated, that not being able to supply the demand for Apple trees, he had been at several nurseries in this State to purchase, and was hard set to get a supply, because so many proved diseased in this way, and that thousands had to be thrown away. Since this, a young friend of mine has returned from Virginia, where he had sold and delivered several thousand trees; and he informs me that his trees were very generally so, and that he was not aware that the appearance was at all prejudicial to the health or value of the trees, nor did the propagator of them seem to be aware of their hurtful nature. Can this insect be the 'woolly aphis'? And if so, what can nurserymen do to get rid of a pest which, unfortunately, is by no means rarely seen? I have detected the presence of the insect much the most frequently on trees which grow on a gravelly or slaty soil, and seldom on trees growing in a mellow loam."

A short description of this species was published in my catalogue of the Homopterous Insects, in the State Cabinet of Natural
History, under the name of *Eriosoma Pyri*. All those Plant lice which were formerly included in Dr. Leach's genus *Eriosoma*, which have all the veins of the wings simple, and those in the disk of the hind pair two in number, now form the genus *Pemphigus* of Hartig (Germar's *Zeitsch.* vol. iii. p. 366), to which genus it is therefore necessary to refer this insect.* Several of the other species of this genus, as well as the present one, are known to infest the roots of plants. I entertain scarcely a doubt that this is the same species which Mr. Walker soon afterwards described, from specimens obtained in Nova Scotia, under the name of *Pemphigus Americanus*; though the length which he assigns to it (four lines) is rather greater than any individuals I have met with.

To our nurserymen it obviously belongs, to fully elucidate the history of this species, and the disease which it occasions, as they enjoy opportunities for observing it such as belong to no other profession. The knots, or excrescences, occur both upon the large roots of the Apple tree and their more slender, fibrous, and capillary branches. In the single instance in which they

*Mr. Westwood, in his *Arena Entomologica*, vol. ii. p. 63, observes that the name *Bryosocrypta* (Byrsocrypta) of Haliday must be retained for Hartig's genus *Pemphigus*. And on the next page we are told: "The generic name of *Eriosoma* (Leach) must take place of that of *Pemphigus*, and be restricted to such species as differ from *Aphis bursarius,*" There is a contradiction here, which I can only account for by supposing the distinguished author, who so accurately a nomenclator, has inadvertently placed the name *Pemphigus* in the latter quotation, where he intended to insert *Schizoneura*. The first division of the old Linnean genus *Aphis* appears to have been made in 1819, when Samouelle (in his Entomologist's *Companion*, p. 232) published the genus *Eriosoma* from Dr. Leach's MSS., with the "*Moli, the *Aphis lanigera* of authors," or the well-known Apple tree blight, as its type. Samouelle's little work, truly a "useful companion" in its day, probably was not circulated upon the Continent, and entomologists there seem to have been uninformcd of its contents. Several synonyms, in consequence, have unfortunately been introduced into the science. Five years afterwards, Blot (in the *Memoirs of the Linnean Society of Calvados*, vol. i. p. 114) named the same insect *Myzoxylus Moli*, which name has been extensively circulated by French writers. Still more recently, Hartig (in *Germar's Zeitschrift*, vol. iii. p. 387) has proposed the name *Schizoneura* for this same genus; whilst Macquart has bestowed the name *Eriosoma* upon a genus of flies, in the Order *Diptera*. Mr. Westwood is clearly right in retaining Dr. Leach's name for the genus having *Aphis lanigera* as its type.

With regard to the statement first made above, I would observe, Mr. Haliday first proposed the genus *Byrsocrypta*, if I mistake not, in the *Annals of Nat. Hist.* for the year 1835, page 189, placing under this genus the *Aphis Ulmi* of Geoffroy, and a new species which he names *pollica*. We hence regard the *Ulmi* and not the *bursarius* as the type of Mr. Haliday's genus. Consequently the name *Byrsocrypta* must be retained for the genus which has *Ulmi* for its type, namely, the *Tetraneura* of Hartig; whilst his genus *Pemphigus*, with *bursarius* as its type, is entitled to stand. I therefore give our American species under this name.
have come under my notice, the main root of the young tree was half an inch in diameter, half a span below the surface, at which point it was two-thirds surrounded by an excrescence two inches in length and three inches in diameter and height, and connected to the root by a neck much smaller than its base.

(The accompanying figure is a view of the back of this excrescence, reduced to one-fourth its actual size, and one of the small fibrous roots, with an excrescence thereon. The original specimen is preserved in the Entomological department of the Museum of the State Agricultural Society.) It is of an irregular, knobbed form. Its surface is of the same yellowish-brown color as the bark of the root, and is everywhere crowded with little round elevations, from the size of a mustard seed to that of a buckshot or a small pea. On cutting one of the projecting knobs, it is found to be of a very hard, woody texture, and without any cavities in its center. Upon the main root, between this and the surface of the earth, was a second similar excrescence, but smaller; whilst upon several of the small capillary fibres were similar tubers, from the size of a pea to that of a bullet.

These excrescences are doubtless formed in much the same way that galls and other morbid enlargements in the structure of vegetables are produced. The parent insect insinuates herself downwards along the side of the root, as it would appear, at the close of autumn, and there deposits her stock of eggs, and perishes. These eggs hatch when the ground becomes warm the following spring, and the young lice insert their beaks into the bark of the root to extract their nourishment therefrom. Their punctures produce a kind of irritation, which causes an increased flow of fluids to the spot where they are located. This excessive amount of sap thus diverted to this part occasions an increased growth of the wood, and results in the enormous development which we have witnessed. As in other cases in this family, these lice probably continue to multiply without any intercourse of the sexes until autumn, when winged individuals are developed, which
leave their retreat, and coming abroad into the open air, copulate, and search out new situations in which to plant their species. Others, as I infer from the lateness of the season when I found young lice upon the excrescences, remain in their abode through the winter, to continue their operations upon the same roots the following year.

The young larva as appears from the hasty notes and sketch which I was able to take whilst they were still alive, were scarcely four hundredths of an inch in length, of an oval form and a pale dull yellow color. Their legs were shortish, robust, and nearly equal in length. The antennae appeared much like a fourth pair of legs, being robust, and about the same length as the legs; they seemed to be five-jointed, the joints successively diminishing in diameter, the one next to the last being longest. From the tip of the abdomen of each of these young lice protruded a white filament, or short thread of flocculent cotton-like matter, variously curled and crinkled in different individuals. The whiteness of this filament rendered it perceptible to the naked eye, and served to show the situation of the insect as it moved about upon the surface of the excrescence, when otherwise it would have been wholly invisible.

The mature winged individuals are nearly or quite a quarter of an inch in length to the tips of the closed wings, and these, when spread, measure thirty-eight hundredths of an inch across. The body, legs and antennae, are coal black; the antennae are about half the length of the body, and the head and abdomen on its back are covered with a dense mass of snow white or bluish white flocculent down. The upper wings are transparent and slightly smoky, as though fine dust had settled upon them. This cloudiness is rather more dense at their tips. The veins are black, faintly margined with dusky brown. The rib vein is robust, and from its base to the stigma, very slightly approaches the margin, it then gradually diverges from it to the base of the fourth vein, where it is more distant from the margin than in any other part of its course; it thence curves slightly towards the margin, and joins it at a very acute angle, the margin being commonly slightly contracted, or obtusely notched, at the point of junction. The first vein curves slightly towards the tip on its basal part, and then runs straight, or near its apex curves almost imperceptibly towards the inner margin. The second vein is rather more robust than the first, is thickest in its middle, at its base curved towards the tip, middle portion straight, apical third curving towards the inner margin; its base is nearer to the base of the first vein than to the outer margin, and it is about seven times as far from the first vein at the apex as it is at the base. The third vein is rather more slender than the first, nearly straight, sub-parallel with the second vein two-thirds of its length, its basal third abortive and imperceptible except in a particular reflection of the light, base about the same distance from the base of the second vein that this is from the first, apex nearer the apex of the second vein than this is to the first. The fourth vein is more robust than the first and third, thickest at base and gradually more slender thence to the
tip, basal portion gently curved, the remaining part straight, its apex nearer that of the third than that of the rib vein, about the same distance from the apex of the rib vein that the apex of the third vein is from that of the second. Marginal vein robust and black from the base to the stigma, very slender and black along the outer margin of the stigma, slender and brown from the stigma around the tip of the wing and along its inner margin to the apex of the first vein, thence robust and black, gradually becoming brown towards the base, stigma dark smoky brown, oblong, its opposite sides nearly parallel, abruptly converging to an acute point at each end, the basal end more acute than the apical, and slightly attenuated. Lower wings more clear and hyaline, marginal vein and outer filament of the rib vein pale brown, inner filament black and very gradually diverging from the outer, both filaments undulated beyond the base of the second vein; the two discoidal veins blackish, the first slightly undulated, its apex the same distance from the apex of the second that this is from that of the inner filament of the rib vein.

An abnormal variety has fallen under my notice in one instance, in which the apex of the fourth vein of the right wing was slightly forked.

When a tree ceases to grow with its usual vigor, and its leaves are of a paler and more yellow hue than usual, and no borers in the trunk, or other obvious cause of disease can be discovered, the presence of this blight upon its roots may be suspected, and the earth should be removed from them sufficiently to ascertain whether excrescences such as have been above described are formed upon them, and if discovered, it will be well to clear away the earth from around them as much as can conveniently be done, and pour strong soapsuds upon them, that it may saturate the crevices in the excrescences, for there is little doubt that every insect that is reached and wetted by this solution will immediately perish. And ashes should be freely mingled with the soil with which the roots are covered. It is probable that by a resort to these measures an affected tree can in most instances be cured.

It is chiefly in nurseries, upon the roots of young trees taken up to be transplanted, that the blight will be detected. In consequence of it thousands of trees in our country have undoubt edly been thrown away. But there is probably no necessity for rejecting such trees. If the root be dipped in soapsuds, unless the lice upon it are a much harder race than their kindred which dwell upon the leaves and twigs of trees, they will at once be destroyed, and such trees may then be set out with as much
safety as though they had never been affected. This, at all events is a point which any nurseryman can easily ascertain by experiment. Mr. Downing recommends the mixing of a shovelfull of ashes with the earth in which such trees are set, which may be equally as effectual as an immersion of the roots in soapsuds.

AFFECTING THE TRUNK.

Excavating a round flat cavity under the bark near the root, and then boring a cylindrical hole upward in the solid wood: a yellowish or white, footless, cylindrical grub, broadest anteriorly, with a brown head and black jaws.

This is one of the worst enemies against which our apple trees have to contend. It is much more common everywhere in our country than is generally supposed. The editor of the Ohio Cultivator (vol. x, page 212), speaks of it as a New England insect, which has never been seen as yet, to his knowledge, in Ohio. There can be no doubt, however, that it is common in that State, for I met with it last autumn in the orchards of Michigan and Illinois, and am informed by the editor of the Prairie Farmer that it has for many years been found in the neighborhood of Chicago. Specimens of the beetle have also been sent me from Arkansas; and as this is a native insect which breeds in the different species of thorn, in the mountain ash, and the shad-bush, there is a strong probability that it is as widely spread over our country as these trees are. And notwithstanding it has been so often noticed in our agricultural and other papers, many of our citizens are yet wholly unaware of its existence, and others who are familiar with the published accounts, suppose it occurs only in some distant localities, and are wholly unsuspicuous that their own neighborhoods and their own trees are suffering from it. We have reason to believe that in many instances where orchards are dwindling and dying from the attacks of this insect, their proprietors suppose there is something in the soil or local situation which prevents their fruit trees from being more vigorous and flourishing. In many sections of our country, it is the current
opinion that particular localities are unfavorable to the growth of fruit trees, and this opinion has almost invariably arisen from the fact that orchards planted in these situations have not been thrifty and productive. Now there is a strong probability that, at least in many cases, those failures have been caused by the attacks of insects, and that these localities which are in such bad repute are in reality as well adapted for fruit culture as any others in their vicinity. The justness of these remarks will be evident from the following case: A lot at East Greenwich, Washington co., recently purchased by Dr Henry K. McLean, had ten young apple trees standing upon it, which are about ten feet high. The bad condition of these trees was noticed by the doctor, when bargaining for the land, and he was told by the former owner that he must not expect fruit trees to do well there, the soil and situation (a terraced flat of gravel, bordering upon Batten kill,) being unadapted to them. Other residents in the neighborhood reiterated the same statement. The doctor, on inspecting the trees more closely, soon afterwards, discovered that they were badly infested with the borer, and going to work with his knife, he last spring dug out and destroyed from these ten trees, over sixty worms, as he assures me, although the statement is almost incredible. Several of the trees were almost girdled, and would have been quite so in a short time. These trees now show for themselves that during the past summer they have scarcely been equalled in the rapidity of their growth and their thrifty condition, by any others in the country. And it is thus rendered evident that the gardens and yards of that neighborhood are well adapted for the cultivation at least of the apple tree, and that the bad repute in which they have heretofore been held, has been wholly unmerited.

Elmer Baldwin, Esq., of Farm Ridge, La Salle county, Illinois, an intelligent fruit culturist, who has had much experience with some of the insects infesting our fruit trees, and to whom I am indebted for several interesting facts relating to this and other species, informs me, that he set out fifty apple trees in the year 1838, and in 1843 when they had grown to about three inches in diameter, a neighbor enquired if the borer was among
his trees, saying it had killed nearly half the trees in his orchard. This was the first time his attention was directed to this insect, and on examination he found that almost every one of his trees had from one to five worms in them; and several were destroyed, beyond all possibility of saving them. In one instance he has found twenty of these worms in one tree. For a few years past they have not been so numerous in his vicinity as they previously were. He has kept a pretty accurate account of his fruit trees, and finds that of all the apple trees he has planted, he has lost one in every eight from the borer. The insect is more fond of the quince, even, than it is of the apple, insomuch that he has found it impossible to grow this fruit, the stalks, notwithstanding all the care he has given them, being almost invariably riddled by the borer. Though he has set out very many quince trees during the past sixteen years, he has never been able to get but a dozen quinces, and these were gathered in the fall of 1853, when all kinds of fruit were so abundant in his section of country.

The accounts which have been given, and the ideas that are prevalent respecting the burrow which this worm excavates in the trees which it attacks are very imperfect, and in part erroneous. It is the common opinion that it simply bores a cylindrical passage upwards in the solid wood of the tree, which passage it keeps clean and empty. If this were the case, a constant effort, I think, would be required to prevent this footless worm from falling to the bottom of its burrow. As we shall see, that part of its operations whereby it does the most injury to the tree, has been hitherto overlooked.

The winged beetle makes its appearance every year early in June. Like other species of the family of long horned beetles (Cerambycidae) to which it pertains, it flies only by night. In the course of this and the following month the female deposits her eggs, one in a place, upon the bark, low down, at or very near the surface of the earth; but when these beetles are numerous, some of their eggs are placed higher up, particularly in the axils where the lower limbs proceed from the trunk. From each of these eggs is hatched a minute grub, or more properly a maggot,
for it has no feet. It is of a white color, with a yellowish tinge to its head. This maggot eats its way directly downwards in the bark, producing a discoloration where it is situated. If the outer dark colored surface of the bark be scraped off with a knife the last of August or forepart of September, so as to expose the clean white bark beneath, as can easily be done without any injury to the tree, wherever there is a young worm it can readily be detected. A little blackish spot, rather larger than a kernel of wheat, will be discovered wherever an egg has been deposited, and by cutting slightly into the bark the worm will be found. It gradually works its way onwards through the bark, increasing in size as it advances, until it reaches the sap-wood; here it takes up its abode, feeding upon and consuming the soft wood, hereby forming a smooth round flat cavity, the size of a dollar or larger, immediately under the bark. It keeps its burrow clean by pushing its excrement out of a small crevice or opening through the bark, which it makes at the lower part of its burrow, and if this orifice becomes clogged up it opens another. This excrement resembles new fine saw dust, and enables us readily to detect the presence of the worm by the little heap of this substance which is accumulated on the ground, commonly covering the hole out of which it is extruded, and by particles of it which adhere around the orifice where it is higher up, or in the fork of the tree; the outer surface of the bark also often becomes slightly depressed, or flattened, over this cavity.

When the worm is half grown, or more, as if conscious it would now form a dainty tid bit for a woodpecker or any other insectivorous bird, and that it was daily becoming less secure in its present situation, by reason of its burrow being so large, and forming so much of a cavity as to be liable to be detected by any scrutiny made on the outside of the tree, it seeks to place itself in a less exposed situation, by gnawing a cylindrical retreat for itself upwards in the solid heart-wood of the tree. Some of its habits are now reversed. The flat cavity which it was so careful to keep clean it is now intent upon filling up and obliterating, as far as it is able, that it may not be discovered. It ceases to eject its castings, and now crowds and packs them in the lower part of its burrow, as it bores a round hole, upward, in the solid wood.
This hole runs slightly inwards, towards the centre of the tree, and then outwards, so that when it is completed its upper end is perforated through the sap-wood, and is only covered by the bark. The lower flat portion of its burrow is by this time stuffed in every part with its castings, whilst the long cylindrical passage above is still empty. As if fearful that these castings, being so fine and dry, might sift out, and thus leave an open passage for some marauding insect or other enemy to crawl in and destroy it during its defenceless pupa state, and that it may, during this period of its life, be securely held in the middle of its cylindrical hole, the worm now turns itself around, (as I think for it is impossible to conjecture how otherwise this long round cavity becomes filled in the manner in which we usually find it,) and with its jaws strips a quantity of woody fibres from the inner walls of the middle part of its burrow, thus enlarging this part sufficiently to give it ample room to repose here in its pupa state, when its body becomes more short and broad than it has previously been. With these fibres of wood, which are from a half to three-fourths of an inch in length, it firmly plugs up all the lower part of its burrow above the flat excavation in the sap-wood, placing the fibres frequently in as regular order as the hairs of a mustache. And the castings which it voids when in this inverted position are crowded, and firmly packed together in the upper end of its burrow. Thus the long cylindrical hole which it has bored becomes filled up, and securely plugged with woody debris at each extremity, leaving only a vacant space in its middle, where it is deepest sunk in the wood of the tree, for the insect to lie during its pupa state. The annexed cut will give an idea of these burrows and their contents, as they appear when the bark is removed and the wood cut away sufficiently to expose their whole length to view. Having now finished its labors and attained its growth it again turns itself around to its former posture, with its head upwards,
becomes inactive, and lies dormant during the winter season, and
the following spring is transformed to a pupa. From this pupa
the perfect insect soon after hatches, and tearing away the saw-
dust like powder which has been packed in the upper end of its
burrow, it has only to break through the bark here, which it
easily does with its sharp, powerful jaws, to come out of the tree.

It will thus be seen that the burrow of this worm consists of
two distinct parts—a round flat excavation in the sap-wood, im-
mediately under the bark, and a long round hole in the solid
wood, running upwards from the upper part of the flat cavity,
first inwards towards the centre of the trunk, and then outwards
to the bark. This upper portion of the burrow is variable in its
length, being sometimes no more than an inch and three-quar-
ters, and at other times, as I am informed, a foot or more. The
lower flat portion as already stated, is about the size of a dollar,
but is frequently much larger than this; and when the worm
comes to knots or other obstructions when excavating it, instead
of making it round it is cut out in an irregular form. But in all
cases the worm passes the first periods of its life in consuming
the sap-wood, its jaws probably being too weak as yet to enable
it to work in the harder wood of the interior of the tree, and it
is by thus mining in the sap wood, and cutting off so many of
its vessels, that this worm does the chief injury to the tree, stint-
ing it in its growth, and causing the leaves to assume a yellowish,
sickly hue. And where four or five worms are at work in one
young tree, as is often the case, these flat cavities in the sap-
wood are liable to come in contact with each other, and thus
completely girdle and destroy the tree.

Numerous variations in the form and direction of the burrows
of these borers may be met with. Some of the worms seem to be
very wild and erratic in their proceedings. It is sometimes the
case that as soon as it reaches the sap-wood it works directly up-
wards, under the bark, and then turns, it may be, obliquely
downwards before entering the heart-wood. A most singular de-
viation from the usual habit was related to me by Esquire Bald-
win, as follows: "The borer first made a flexuous channel up-
wards under the bark, a distance of two feet, the channel becoming gradually larger as the worm had increased in size. Having traced its burrow thus far by means of a pointed twig, for (said my informant) whenever I find one of these fellows in my trees I am after him immediately 'with a sharp stick;' I found he had bored directly through the centre or heart of the tree, which was four inches in diameter, taking a course slightly upwards, so that after loosening and removing some of the stuffing in the hole, I discovered my rod had pricked through the bark on the opposite side of the tree, and yet did not encounter the worm; but on examining upon this side of the tree I found having not quite completed his feast, he had gone upwards in the sap-wood three inches further, where I finally discovered 'the gentleman.' He evidently had finished his travels, for he was an inch and a half in length, was sluggish and inactive, and to all appearances was about changing to a pupa.' According to Dr. Harris (Treatise on New England Insects, page 95,) the larva state of this insect continues from two to three years.

Mr. T. B. Ashton, of Whitecreek, New-York, informs me that he has in different years captured about one hundred and fifty of these beetles in their perfect state, and that only one-third of these have been females. According to his observations the time of their appearance varies somewhat, as the season is more forward or backward, but commonly, here in Washington county, forty miles north of Albany, they begin to be found upon the trees about the 20th of June, from which time until the close of the month they appear to be more numerous than they are afterwards.

The mature worm varies considerably in its size, but is most commonly rather less than an inch long, and over a quarter of an inch in diameter anteriorly at its broadest part. It is of a cylindrical form, the second segment being bulged and rather broader than the others. It is soft and fleshy, and of a very pale yellow or a white color. The head is chestnut-brown, polished and horny, with scattered hairs; the upper jaws (mandibles) are deep black, sloped at their tips, which are obtusely rounded; between them appears the labrum or upper lip, of a tawny yellow color, and densely clothed with short hairs; the throat is also pale tawny yellow. The feelers (palpi) consist of a conical, three-jointed process, on the under side of each mandible, and inserted upon the lower jaw (maxilla) the tip of which slightly projects in the form of a short roundish process at the inner base of the feelers. The feelers of the
lower lip (labial palpi) are also perceptible, forming a conical two-jointed process of a chestnut color, inside of each lower jaw. The antennæ are also represented by a small jointed, projecting point, near the outer angles of the head, so minute that we should little suspect it would become developed into the long horn which we find in the winged beetle. Scattered over the remainder of the body, more densely in particular places, are numerous short brown hairs. The second segment is larger than any of the others, as shown in the following cut; its upper side slopes obliquely downwards and forwards, and is occupied by a large smooth spot of a pale tawny yellow color, the posterior part of which is covered with brown points; beneath is a smaller transverse space, occupied by similar points, but with a band destitute of them running across its middle, and on each side is a pale tawny yellow spot destitute of these brown points. The third and fourth segments are shorter than the following ones. On the top of the fourth and each of the succeeding segments, to the tenth, is a transverse wart-like elevation, divided into two parts by a strongly impressed longitudinal line. Along each side the spiracles or breathing pores form a row of nine chestnut brown dots, situated upon the second, the fifth and each of the following segments; and immediately below these is an elevated longitudinal ridge, which is interrupted at the joints. Beneath, as above, is a transverse wart like hump on the middle of each segment from the fourth to the tenth, with a faint longitudinal impression across its middle. There are thirteen segments in all, separated from each other by strong constrictions. The last one of these is double, or appears like two segments, its posterior portion being but half as broad as the anterior, into which it is deeply sunk.

The perfect insect or beetle measures from slightly over one-half to plump three-fourths of an inch in length, and from 0.17 to 0.25 in width, the males being smaller and much more slender than the females. It is covered with dense appressed milk-white pubescence, and above are three broad stripes, formed by short appressed hairs, of an umber or butternut brown color, not a fuscous brown, as is stated in some of the descriptions. These stripes commence upon the base of the head and extend the whole length of the body. Both upon the thorax and the elytra, they are coarsely punctured, each puncture yielding a short black nearly erect bristle. The middle stripe embraces the suture of the elytra, is gradually narrowed to a point posteriorly, and does not reach the apex of the suture. The outer stripes are narrower on the thorax, and occupy the outer half of each elytron, and are edged exteriorly at their tips with white. The white portions of the surface are clothed with fine white hairs, which on the face are interspersed with black bristles arising from fine black punctures. The head has an impressed black line in its middle, upon which in the center of the face is a brown spot, which is round, kidney-shaped or like the letter V. In the females this spot is sometimes wanting, or is replaced by two faint dots. The mouth is black, with the labrum or upper lip and the bases of the mandibles clothed with white appressed hairs. The eyes are coal black. The antennæ are inserted upon a short broad prominence which arises in the notch of the eyes. They are slightly longer than the body in the males and shorter in the females. They are composed of eleven
joints, whereof the second one is quite short and all the others long and cylin-
drical, the basal one being much thicker than the others. They are covered
with appressed white hairs upon a black ground, causing them to appear gray
in the males and white in the females. The basal joint has several scattered
black bristles, and upon the under side is a row of similar bristles to the end
of the fifth joint, and three at the tips of each of the three following joints.
The thorax presents a slender line in its middle, which line is impressed poste-
riorly and elevated anteriorly, its anterior end being often of a white color.
The legs are of the same color as the antennae, the soles of the feet being pale
brown or yellowish, and the hooks at their tips are reddish-brown,

This insect was regarded as a new species by Mr. Say, and he
accordingly described it in the year 1821, in the Journal of the
Academy of Natural Sciences, (vol. iii. p. 409,) under the name
of Saperda bivittata or the Two-stripped Saperda, which name is
also adopted by Dr. Harris, and is currently known throughout
our country as the scientific name of this insect. Fabricius long
since very briefly noticed a species (Entomologia Systematica,
vol. i b. p. 307,) which he found in the museum of Dr. Hunter,
the native country of which was unknown, under the name of
Superda candida, or the White Saperda. He merely says of this
insect that it is white, above fuscous with two white stripes, and
with obtuse, smooth elytra. As Dr. Hunter's museum contained
many insects from this country, Prof. Haldeman and Dr. Le Conte
regard our Apple tree borer as being without doubt the S. can-
dida of Fabricius. In this they are probably correct; but as our
insect is clearly of an umber and not a fuscous brown color, and
has punctured elytra, marks which are at variance with the Fa-
brician account, I deem it more safe to retain the name given by
Mr. Say, connected with which there is no query, until our insect
has been compared with the specimen, which is probably still in
existence, and from which Fabricius drew his description.

Among the means provided by the Author of Nature for de-
stroying this borer and keeping it from becoming unduly multi-
plied, the woodpeckers of our country, and particularly the
Downy woodpecker (Picus pubescens, Lin,) which is so frequently
seen in our orchards, stands conspicuous. This gay bird seems
to have been endowed with the habits and furnished with the
organs which it possesses, for the express purpose of enabling it
to discover and prey upon the Apple-tree borer and similar
larvae. As these worms place themselves under the bark, down at the very surface of the ground, their lurking place can only be found by a bird which makes its examinations with its head downwards; and the slender, extensile, flexible, barbed tongue of this bird was evidently constructed to enable it to probe the holes and explore the crevices and cavities of the bark, and transfix and drag from its cell any worm which is found reposing there. Esquire Baldwin tells me that in numerous instances he has found the flat cavity excavated by the borer under the bark, without any vestiges of a worm in it, and has been wholly at a loss to account for its disappearance at this time, when its burrow is not half completed. My neighbor, Peter Reid, who has devoted much attention to our birds and their habits, informs me he has repeatedly noticed the woodpecker remaining some considerable time down at the very root of the Apple tree, busily occupied in some operation at that particular part. These facts we think clearly elucidate each other, and render it evident that the woodpecker is the most formidable natural enemy to the Apple-tree borer which exists. And whether such a war of extermination should be waged against this bird, as has been declared by high authority (Kirtlands's Zool. O., p. 179), we leave to be considered hereafter.

It is probable, from what is said of the next species, that this also is subject to the attacks of Hymenopterous or Bee-like parasites, which feed upon and destroy the worm, although I am not aware that any of these have as yet been actually discovered preying upon it.

On glancing over the various remedies which have been proposed, and which may be met with in our agricultural papers, for the destruction of this borer, we are forcibly impressed with the fact, that, although these publications are doing great good in our community, they still unwittingly circulate many things that are foolish, and some that are pernicious. As an instance, we may cite the following: "One of the surest means to destroy the borers in Apple trees, is to make a solution of potash, two pounds to a gallon of water, which must be injected into the hole where the borer has entered, by means of a syringe holding half a pint." Now, we are not without suspicions that so strong a solution of caustic potash would destroy not only the borer, but the tree
also, especially if a half pint of it could be injected into each of the holes which are frequently made by four or five worms in one young tree. But as these holes are commonly already stuffed full of sawdust-like matter and woody fibres, we see not how anything can possibly be injected until these are removed. And this solution, we are further told, must be injected " into the hole where the borer has entered." Now this hole is at first no larger than a pin, and often becomes wholly closed up in the course of a few weeks, so that, as Hood says, "there a'n't no Billy there" —the worm having opened another orifice through which to eject its castings. Yet the terms of the prescription are explicit and peremptory. Through the hole where the worm has entered the solution "must be" injected.

In the treatment of the Apple-tree borer, to use a medical term, there are two "indications." The first is, to protect the tree from attack; the second, to destroy the worm. And as we have simple, direct, and effectual modes for accomplishing both these purposes, there is no occasion for dwelling upon those which are of doubtful efficacy or inconvenient to be applied.

Experiments amply show that alkaline preparations of suitable strength are most repulsive, nay, directly poisonous to most insects and their larvae, whilst upon vegetation they have an opposite effect, promoting the health and accelerating the growth of plants. Of these preparations, one of the least expensive, one which is everywhere at hand, and of suitable strength for being applied freely to the outer bark of trees without danger of eroding or otherwise injuring its texture, is common soft soap. Many citizens from all parts of our State, who were present at the last annual meeting of the State Agricultural Society, will recollect the high encomiums passed upon this article, by the Hon. A. B. Dickinson, and his statement that a handful of it placed in the axils of the lower limbs was a sovereign prophylactic, repelling all insects from the tree. Although we cannot deem the application of this substance in this simple manner such a panacea as was intimated, indeed, we are confident it could have no effect to prevent a moth or a plant-louse from alighting and depositing its eggs upon the distant leaves and twigs—yet against all those
insects which infest the trunk or which are obliged to crawl up the trunk to gain access to the tree, we have little doubt it will prove an effectual safeguard. Washed downwards as it will be by the rains so as to impregnate the bark over the chief part of the trunk and to the very root, there is little probability that the beetle of the Apple-tree borer will venture to deposit its eggs in a situation where those eggs, or the young worms which proceed from them, will be exposed to destruction from encountering this alkaline matter. The late Mr. Downing (Horticulturist, vol. ii. p. 531) recommended a mixture of soap, sulphur, and tobacco water, with which to paint the bark of the tree immediately above the surface of the ground, and in the axils of the lower limbs; subsequently (vol. iv, p. 536) he recommends soap merely thinned with tobacco water, to the consistence of thick cream, to be applied to the same places. According to his observations, the borer entirely forsook the trees which were thus washed, even though the mixture had been applied some weeks previous to the appearance of the winged beetle. There can be little doubt that the efficacy of these prescriptions of Mr. Downing depends chiefly, if not entirely, upon the soap they contain. It will be as well therefore, to apply this alone, in the manner in which it is used by Senator Dickinson, or by rubbing it in the axils of the lower limbs and around the base of the tree, these being the parts which are liable to be attacked by this insect. In all orchards where the borer is present or where a visit from it is apprehended, this measure should invariably be resorted to the latter part of May, or in more northern localities, where the beetle will be somewhat later in appearing, early in June. Young thrifty trees, especially, should be attended to, as this insect appears to be particularly inclined to infest them.

With regard, in the next place, to destroying the worm, where the trees have been neglected and the beetle has been permitted to invade them and deposit its eggs. If time permits, the orchard should be examined the last of August, and the outer surface of the bark at the root scraped, to detect any black spots therein; for at this time, the minute worms in the bark can be more readily destroyed, than at any subsequent period, and before they have
done any injury to the tree. It is the practice of Esquire Baldwin to wash the butts of his trees with strong lye, the last of August. The newly hatched grubs are now but slightly sunk in the bark. The lye penetrates the small orifices which they have formed and destroys them. He makes it an invariable rule thus to wash his trees every year, and since he commenced this treatment it is very rare that he has found a borer in them.

But if, through the pressure of other avocations during the busy summer months, the orchard has been neglected and these borers have penetrated the wood, they should still be carefully searched out and destroyed, for they continue to cause irritation and injury to the tree so long as they remain in it. Before the fall of the leaf, trees which are badly infested may be known by their sickly, chlorotic appearance. Mr. Ashton informs me, an experienced person can easily determine when young trees are suffering from the borer, by taking hold of them and swaying them to and fro. Infested trees, when thus handled, feel as though they were loose at the root, in consequence, no doubt, of having so many of their fibers cut off by the worm; whilst unaffected trees feel more stiff, and as though they were firmly bound by the soil. But at all seasons of the year the presence of this worm can be most readily and certainly ascertained by examining the surface of the ground where it is in contact with the tree. The small heap of sawdust-like castings remains piled up against the bark, covering the orifice from whence they were extruded, for months afterwards. Therefore, in warm days in winter and early spring, when almost every one is most at leisure and has the strongest relish for some out-door work of this kind, the snow being off the ground, these borers may be hunted with success.

Various expedients for killing the worm, such as injecting different solutions, plugging up the hole, thrusting a wire into it, &c., have been proposed, many of them, I must think, by persons who had very little practical acquaintance with the subject on which they were writing—the opening into the burrow being at the surface of the earth in most cases, so low down and difficult of access by grass and often by suckers or young shoots growing in front of it, as to render a resort to many of these remedies very
difficult if not absolutely impracticable. On the whole, I think the best resort of any now in use, is that which is most commonly practised, namely, opening the burrow with a chisel or a stout bladed knife, to where the worm lies, and destroying "the villain." Experience shows that the wound thus made in the tree is of little account, as it readily heals, and injures the tree far less than does a continuance of the worm therein. Even where three, four, or five worms are cut out of one small tree, the vigor with which it starts forward immediately afterwards sufficiently attests the benefit which has been rendered it.

But when I came to examine the situation of this worm and the construction of its burrow, a remedy suggested itself to me so perfectly simple and sure, and so easy of application, as I have found on trial, that I am surprised it has never before been proposed. It consists in scalding the worm by pouring hot water into the top of its burrow. The upper end of the burrow can easily be found by puncturing the bark with an awl, or even with a stiff pin directly above the orifice where the castings have been ejected. It is commonly about three inches above this orifice, but may be an inch less or a few inches more. It is discovered by the point of the awl readily sinking in much deeper here than it will elsewhere. Then, with the point of a pen-knife cut away the bark, which is already dead, which covers the upper end of the burrow, and scrape out the saw-dust like castings which are packed into this part of the cavity, loosening and removing them as far down as can conveniently be done. Then from a tea pot or other vessel having a small spout, pour hot water into the hole, at intervals as it soaks downwards, for a few moments, until you are certain, from its oozing out at the lower orifice, or otherwise, that it has reached the worm sufficiently to kill it. By cutting downwards into the wood, and extracting the worm, a few minutes after this operation, any one can satisfy himself that the culprit is, as Patrick says, "killed dead," and that

"A kettle of scalding hot water injected
Infallibly cures the timber affected,
The worm it will die and the tree will recover."

Indeed it is quite probable that merely opening the upper end of the burrow, in the manner above described, so as to permit the
rain to enter and soak downwards, will destroy the worm. And it may be that by introducing soap or some other substance into the hole, the tree will be aided in its recovery, and the bad scar be prevented which commonly results from the wound made by this worm. These are points which can only be determined by experiments which I have not yet had opportunities for carrying into operation.

Boring under the bark and in the solid wood; a pale yellow, footless grub, its anterior end enormously large, round and flattened.

Running up and down the trunk and limbs in June and the fore part of July; an oblong, brassy-blackish snapping beetle, nearly half an inch long, its back under its wings brilliant bluish green.

The Thick-legged Buprestis, or Snapping-beetle, Chrysobothris femorata, Fabricius.

Another insect, which has not heretofore been noticed in our country as a borer in the Apple tree, pertains to the Family Buprestidae, or the brilliant snapping beetles. Mr. P. Barry, of the Mount Hope nurseries, Rochester, has forwarded to us sections of the body of some young Apple trees, which were sent to him from a correspondent in Hillsboro, in southern Ohio, who states that in that vicinity the borer, which is contained in the specimens sent, is doing great damage to the Apple trees, and that he has had Peach trees also killed by this same worm. From an examination of these specimens, it appears that this insect is quite similar to the common Apple tree borer in its habits. The parent insect deposits its eggs on the bark, from which a worm hatches, which passes through the bark and during the first periods of its life consumes the soft sap wood immediately under the bark. But when the worm approaches maturity and has become more strong and robust, it gnaws into the more solid heart-wood, forming a flattish, and not a cylindrical hole such as is formed by most other borers—the burrow which it excavates being twice as broad as it is high, the height measuring the tenth of an inch or slightly over. It is the latter part of summer when these worms thus sink themselves into the solid heart-wood of the tree, their burrow extending upwards from the spot under the bark where they had
previously dwelt. On laying open one of these burrows I find it is more than an inch in length and all its lower part is filled and blocked up with the fine sawdust-like castings of the worm. Thus when the worm is destined to lay torpid and inactive during the long months of winter, it has the forethought, so to speak, to place itself in a safe and secure retreat, within the solid wood of the tree, with the hole leading to its cell plugged up, so as effectually to prevent any enemy from gaining admission to it.

Still, this worm is not able to secure itself entirely from those parasitic insects which are the destroyers of so many other species of its race, and which, as is currently remarked, appear to have been created for the express purpose of preying upon those species, in order to prevent their becoming excessively multiplied. We should expect that this and other borers, lying as they do beneath the bark or within the wood of trees, were so securely shielded, that it would be impossible for any insect enemy to discover and gain access to them, to molest or destroy them. But among the specimens sent me by Mr. Barry, is one, where the worm has been entirely devoured, nothing but its shrivelled skin remaining, within and upon which are several minute maggots or footless little grubs, soft, dull white, shining, of a long egg-shaped form, pointed at the tip and blunt in front, their bodies divided into segments by very fine transverse impressed lines or sutures. They are about one-tenth of an inch long and 0.035 broad at the widest part. These are evidently the larvae of some small Hymenopterous or Bee-like insect, pertaining, there can be little doubt, to the family Chalcididae—the female of which has the instinct to discover these borers, probably in the earlier periods of their life when they are lying directly beneath the bark, and piercing through the bark with her ovipositor, and puncturing the skin of the borer, drops her eggs therein, which subsequently hatch and subsist upon the borer, eventually destroying it. These minute larvae were forwarded to me under the supposition that they were injurious to the Apple tree, whereas, by destroying these pernicious borers, it is evident they must be regarded as our best friends. This fact illustrates
how important it is for us to be acquainted with our insects in
the different stages of their lives, that we may be able to discrimi-
nate friends from foes, and know which to destroy and which to
cherish.

The preparatory states of but a very few species of the exten-
sive family of insects to which the borer now under considera-
tion belongs, appear to have been hitherto noticed; and, so far as
I am able to ascertain, the only figure of a larva like this which
infects our Apple trees, which has yet been published, is that of
Agri/us Fagi, in Dr. Ratzeburg's work on the Forest Insects of
Europe, (plate ii, fig. 8 c.)

The form of this borer is quite singular, and bears some resemblance to that
of a tadpole, or a battledoor. It consists of a very large, round, flattened por-
tion, anteriorly, which is suddenly tapered into a long cylindrical tail or handle-
like portion. The broad anterior part of this worm is about two-tenths of an
inch in diameter and the narrow posterior part is but half as wide. Its length
is about 0.65. It is soft, flesh-like, and of a pale yellow color. In
front two short robust jaws of a deep black color and highly
polished are slightly protruded. When these are spread apart
the tips of the feelers and between them the lips are perceptible.
The head is blackish brown and polished, and is deeply sunk
into the second segment. Near each outer angle of the head is
a small pale yellow, bead-like protuberance, which is probably
the antenna. In Dr. Ratzeburg's figure, above alluded to, this
slight protuberance is represented, probably incorrectly, as
arising from the second segment. The second segment is deep-
ly sunk into the third, and like all the remaining segments is a pale yellow, and
clothed with short minute hairs. The third or large segment is rather more
broad than long, and is round and flattened above and beneath. Its upper side
is occupied by a large callous-like, transverse-oval elevation, the surface of
which is flat and covered with numerous brown raised points, and in the mid-
dle are two smooth impressed lines, which diverge from the anterior to the pos-
terior margin. Between these, on the middle of the basal edge, is a more faintly
impressed line, running forward, but becoming effaced before it reaches the cen-
tre. On the under side is also a callous-like elevation, similar in all respects to
that on the upper side, except that in the place of the impressed lines it has in its
middle a single channel or furrow, which does not extend to the posterior
nor quite to the anterior margin. The fourth segment is a third narrower than
the preceding, and has an impressed transverse line in the middle. In the deeply
impressed sulure which divides this from the third segment, on each side, is a
smooth, crescent shaped, elevated spot of a chestnut brown color, resembling
a little tick adhering in the fold of the skin. The nine remaining segments are
of nearly equal length and diameter, except the two last, which are successively
narrower. They are separated from each other by sutures which are strongly
constricted. Along the middle of the back is a smoothish faintly marked line,
and on each side of each segment is an irregular triangular indentation, from the inner angle of which a faint impressed line extends inwards. On each side, beneath, is an impressed, longitudinal line. There are no conical projecting points at the apex of the last segments.

These borers, sent to me as above stated, have not yet completed their transformations; but they will in all probability remain in their present cells in the wood, and be changed to pupae the coming spring, from which the perfect insects will issue the latter part of May and during the month of June. And there can be little doubt that they will prove to be the species named by Fabricius *Buprestis femorata*, which species pertains to the modern genus *Chrysobothris*. This insect may be met with in all parts of our country. The natural place for its larva is in the White oak, and it is probable that being deprived of a sufficient supply of this wood, in which to deposit its eggs, in consequence of our forests being so rapidly and extensively cut down, this insect has been obliged to resort to the Apple and Peach trees. Dr. Harris speaks of meeting with it upon and under the bark of Peach trees, and I have captured it upon the Apple tree. Professor Kirtland, of Cleveland, Ohio, doubtless alludes to this species, (Downing's Horticulturist, vol. ii. p. 544,) when he says, "Our Apple trees are often injured by the larvæ of the *Buprestis*, which will girdle out extensive portions of the bark and young wood." This, moreover, is in all probability the beetle of which a wood cut illustration is given in the Ohio Cultivator, vol. x, page 242. Although no description of the insect or its larvæ is given, the figure presents more points of resemblance to *C. femorata* than to any other common American species. The following interesting particulars, there stated, sufficiently indicate that this beetle will be liable to do great damage in our orchards. The editor says, "The late Dr. Barker of McConnelsville, (Morgan county, Ohio,) called our attention to the injury done to his Apple trees, by the beetle represented above, several years ago. It was in the month of July, and large numbers of these beetles were seen running up and down the trunks and branches of the trees, while beneath the bark extensive ravages of the larvæ were found. We observed, however, that these injuries seemed in nearly or quite all cases to have commenced where the bark had previously been
killed from some other cause, and were almost invariably on the south side of the trees. We have since found occasional marks of these insects in other orchards, but never where the trees appeared to have been in perfect health previous to their attacks." This beetle, however, is by no means limited to old and decaying trees, as the observations of the editor of the Ohio Cultivator lead him to infer. The sections of wood sent me by Mr. Barry are from young and thrifty Apple trees; and it occurs in Oaks, also, of this character, as well as those which are aged and perishing.

Like other species of its family, the Thick-legged Buprestis is variable in size, measuring from four to five-tenths of an inch in length, and about two-tenths in width. It is of a black or greenish black color, polished and shining with the surface rough and uneven. The head, and sometimes the thorax, and the depressed portions of the elytra, are of a dull coppery color. The head is sunk into the thorax to the eyes, is densely punctured, and is clothed in front with fine white hairs, which are directed downwards. Upon the middle of the top of the head is a smooth, raised black line, with a narrow impressed line through its middle, a mark which serves to distinguish this from some of the other species which are closely related to it. The thorax is much more broad than long, and is widest forward of the middle. Its surface is covered with dense, coarseish punctures, which run into each other in a somewhat transverse direction. It is also somewhat uneven, with slight elevations and hollows, but has not two smooth raised lines on its middle and anterior part, which are met with in another species very similar to this, the Tooth-legged Snapping beetle, (Chrys. b thris dentipes, Germar.) The elytra or wing-covers present a much more rough and unequal surface than any other part of the insect. Three smooth and polished raised lines extend lengthwise of each wing-cover, and the intervals between them are in places occupied by smaller raised lines, which form a kind of net-work; and two impressed transverse spots may also be discerned more or less distinctly, dividing each wing-cover into three nearly equal portions. These spots reach from the inner one of the three raised lines nearly to the outer margin, crossing the two other raised lines, and interrupting them more or less. They are commonly of a cupreous tinge, and densely punctured, but are more smooth than the other portions of the surface. A smaller and more deeply impressed spot may commonly be found in the space next to the suture, and forward of the anterior spot, of which it is, as it were a continuation. The wing-covers are rounded at their tips, so as to present a slight notch at the suture when they are closed; and the outer margin, towards the tip, has several very minute, projecting teeth. When the wing-covers are parted the back is discovered to be of a brilliant bluish-green color, and thickly punctured, with a row of large impressed spots along the middle, one on each segment, and half way between these and the outer margin is another row of smaller impressed dots, having their centres black. The under side of the body and the legs are brilliant coppery, the foot being deep shining green, their last joint and the hooks at its end black. Here also the surface is everywhere
thickly punctured, the punctures on the venter or hind part of the body opening backwards. The last segment has an elevated line in the middle at its base, and its apex is cut off by a straight line, in the middle of which is commonly a small projecting tooth. The anterior thighs are remarkably large, from which circumstance this species has received its name, and they have an angular projection on their inner sides, beyond the middle. The tibiae or shanks of these legs are slightly curved.

The remedies for destroying this borer must necessarily be much the same with those already stated for the common borer or Striped Saperda. They consist essentially of three measures: 1st, coating or impregnating the bark with some substance repulsive to the insect; 2d, destroying the beetle by hand picking; and 3d, destroying the larva by cutting into and extracting it from its burrow.

As it is during the month of June and fore part of July that the beetle frequents the trees for the purpose of depositing its eggs in the bark, it is probable that whitewashing the trunk and large limbs, or rubbing them over with soft soap, early in June, will secure them from molestation from this enemy. And in districts where this borer is known to infest the Apple trees, the trees should be repeatedly inspected during this part of the year, and any of these beetles that are found upon them should be captured and destroyed. It is at midday of warm sunshiny days that the search for them will be most successful, as they are then most active, and show themselves abroad. The larva, when young, appear to have the same habit with most other borers, of keeping their burrow clean by throwing their castings out of it through a small orifice in the bark. They can therefore be discovered, probably, by the new sawdust-like powder which will be found adhering to the outer surface of the bark. In August or September, whilst the worms are yet young, and before they have penetrated the heart-wood, the trees should be carefully examined for these worms. Wherever from any particles of the sawdust-like powder appearing externally upon the bark, one of these worms is suspected, it will be easy, at least in young trees, where the bark is thin and smooth, to ascertain by puncturing it with a stiff pin, whether there is any hollow cavity beneath, and if one is discovered, the bark should be cut away with a knife, until the worm is found and destroyed. After it has penetrated the solid
wood, it ceases to eject its castings, and consequently we are then left without any clue by which to discover it. Hence the importance of searching for it seasonably.

A small, oblong, flattish, brown scale, shaped like an oyster shell, fixed to the smooth bark; often in prodigious numbers; in winter and spring covering a number of minute, round, whitish eggs.

The Apple Bark-louse, *Aspidiotus conchiformis*, Gmelin; *Coccus arborum linearis*, Modeer and others; *Diaspis linearis*, Costa.

The Bark-louse is, on the whole, the most pernicious and destructive to the apple tree, at the present time, of any insect in our country. Every where through the northern States it is infesting the orchards to a grievous extent, causing the death of many trees, and impairing the health and vigor of many more.

It appears in the form of minute scales, resembling the shell of a muscle or an oyster in their shape, adhering to the surface of the bark, as shown in the annexed cut. It is no rare occurrence to meet with young trees, the bark of which is literally covered and crowded with these scales from the root to the end of the twigs, and some individuals finding no vacant spot upon the bark where they can fix themselves, are driven to the leaves and the fruit, for upon these one or more of these scales may sometimes be found. And when a tree continues to be thus infested, year after year, it dwindles away and finally dies. I have observed this to be the case especially with young trees standing alone in fields, where, when the vigor of the tree becomes impaired, the insect has no other tree to which it can migrate, better adapted for its sustenance. Other trees have been noticed as overrun by this insect for a year or two, when, probably from the tree becoming so exhausted as no longer to be capable of suitably sustaining the insects, they cease to affect it, and it, after a few years, recovers. Whether in such instances the insects perish for want of due nourishment, or whether they migrate to other trees, I am unable to say, though I incline to the opinion that the former is the case with the chief part of them.
Badly as this insect is infesting our orchards in the State of New-York, it is seourcing our western neighbors far more severely. In those districts bordering upon Lake Michigan, in particular, it is at the present time making the most appalling havoc, surpassing anything which has hitherto been recorded of this species. Scarcely a tree is free from them, and unless measures for destroying the insect are resorted to, the tree is sure to perish within a few years after it is invaded.

George Kimball, Esq., of Kenosha, Wisconsin, gave me the following interesting account of the introduction and spreading of this insect among his trees: "The bark-louse appears to have been introduced here in the year 1840 by four young sweet apple trees which my son brought from Cleveland, Ohio. These trees dwindled, their limbs had a black appearance, and the bark was everywhere covered with these lice, crowded upon and overlapping each other, so that they would peel oft in large scales, and be washed off by rains, clusters of them adhering together in sheets, till finally, in the year 1848, these trees died, having grown not more than an inch annually for the last three years. And the same lice had now spread upon and were covering my other trees more or less. All my trees became badly infested, the sweet ones being overrun more than the others. Some of them took up their abode upon my pear trees also, particularly upon a small tree which I happened to have, bearing hard worthless fruit; this was covered with them as badly as some of my apple trees. We could find nothing in books, or in agricultural or horticultural papers which seemed to apply to this louse, and hence were thrown upon our own ingenuity to combat it. Efforts were made in this village to organize a society, with an admission fee of ten dollars, to raise a fund with which to encourage experiments, and handsomely reward the person who discovered the best remedy. A secret remedy, which proved to be worthless, was extensively sold all over this section of country for one dollar to each person. Hoping that my younger and more vigorous trees would outlive the pest, I dug up and threw away all my old trees, upwards of thirty in number. I have now about one hundred and fifty trees, none of them over twelve years old, and
have strong confidence that the remedy to which I now resort will keep them freed from the bark-louse. But through all this district of country the trees are overrun and dying from these insects, a tree not living but about three years after it becomes badly infested, and on almost every farm several dead trees may be seen, and many more which are so far gone that they can never recover."

This insect does not appear to have penetrated west, as yet, beyond the districts bordering upon Lake Michigan. I found the orchards upon the Mississippi river free from it, and on a most particular inspection of the trees of Esquire Baldwin, of Farm Ridge, less than a hundred miles west of Chicago, they were found to be wholly uninfested. But that it will gradually extend itself onwards over the entire west, there can be no doubt. And it is to be feared that for some years after its first arrival in each place, it will run much the same career it is now doing on the borders of Lake Michigan, it being common for a noxious insect when newly introduced, to multiply and thrive to a much greater extent than it does subsequently, after it has become fully naturalized.

At the west it is generally supposed that this insect is a new species, peculiar to that section of the country, as no distinct description and account of it is given in works accessible to the mass of readers. And, entertaining this view, my friend Robert W. Kennicott, of West Northfield, Illinois, in a communication read in June last, before the Cleveland Academy of Natural Sciences, and published, with a figure of the young larva, in the newspaper report of their proceedings, names it the *Coccus Pyrus* *Melus*, under which name I observe it is since spoken of in some of the western agricultural periodicals. But this insect is certainly identical with the one which we have here at the east, which has all along been regarded as the same which has long been known upon the apple and some other trees and shrubs in Europe. It was first described by Reaumur, in 1738, who found it upon an elm in France; and it appears to have been named *Coccus arborum linearis*, (which literally means the Linear Bark-louse of
trees,) first by Modeer, (Act. Gothenb. i. 22,) by which name it has been noticed by Geoffroy, and authors generally since. Gmelin refers to the same insect, at least as it has been generally supposed, under the name Coccus conchiformis, or the Shell-form or Oyster-shaped Bark-lice. The specific name, arborum linearis, if really designed for the Bark-lice upon the Apple-tree, is a very unfortunate one, as this species is not linear in its form, but tapering, and nearly all the other species of Bark-lice infest trees as well as this. Costa has recently reformed this name, by omitting from it the redundant word arborum. But if the original name is to be rejected, in consequence of its non-conformity to the present rules of scientific nomenclature, Gmelin's name conchiformis must assuredly take its place, in consequence both of its priority and its appropriateness. Some of the latest authorities, however, regard the conchiformis and linearis as being two distinct species. This threw such doubt upon the question which of these names should be adopted for our Apple Bark-Louse, provided it was identical with the European insect, as I felt myself scarcely competent to resolve, with the few authorities upon these insects which I have at hand. As Mr. Curtis, the distinguished British entomologist, now president of the Entomological Society of London, had communicated a series of articles upon several of the species of this genus, to the third volume of the Gardener's Chron- mele—a volume to which I have not access—and as I had heretofore had some correspondence with him, I recently enclosed to him for his opinion, specimens of our Apple Bark-Louse, and also a seemingly identical species found upon our Red Osier, (Cornus sericea.) The following is an extract from his reply: "I have carefully examined your specimens. They are identical, and are the Coccus arborum linearis, Geoff., and I believe the C. conchi- formis of Gmelin, which is in that case a synonym. You are right in placing them in the genus Aspidiotus." I trust this information will satisfy some of my western friends, who have been reluctant to credit my statement that their insect is not new, but is common here at the east, and also in Europe.

Mr. Rennie speaks of having found this species in great plenty upon currant bushes. I have never met with it upon the culti-
vated currant, but have found it upon our wild currant (*Ribes floridum*) pretty numerous. Scales very similar to those of the Apple bark-louse, but of a smaller size, of a pale brownish color, and not curved, may be met with also upon the twigs of the butternut. Some of these are so small as to be imperceptible to the naked eye. As they are evidently a distinct species, I propose to name them the Butternut Bark-louse, *Aspidiotus Juglandis*. My friend, Dr. A. S. Todd, of Wheeling, Virginia, has sent me specimens of another species of this same genus, occurring upon Rose bushes. He says: "My finest roses are cursed with these vermin. They kill 'for certain' every Rose bush they get upon. It dies to the ground." This is a round, flattish, white scale, about five hundredths of an inch in diameter, often with a light yellow spot or cloud in its center. This is probably the *Aspidiotus Rosae* of Boucée, (Schadl. Gart. Ins., p. 53,) which is briefly noticed in Kollar's Treatise, English edition, page 179.

The Apple Bark-louse is about one-eighth of an inch long, of an irregular ovoid form, often bent in its middle, and more or less curved at its smaller end, which is pointed, the opposite end being rounded. It is of a brown color, of much the same tint with the bark, its smaller end being paler and yellow. It closely resembles an exceedingly minute oyster-shell pressed against the bark—a similitude so striking as to be readily perceived by every one, and is frequently designated in common conversation, under the name of the Oyster-shaped Bark-louse. These shells or scales are situated irregularly, though the most of them are placed lengthwise of the limb or twig, with the smaller end upwards. These scales are the relics of the bodies of the gravid females, covering and protecting their eggs. During the winter and spring, these eggs may be found on elevating the scales. The number of eggs under each scale is very variable. Several which I have counted, have shown the following numbers—13, 22, 36, 54, 58, 71, 86, 102. I have uniformly found a greater number of eggs where the scales were upon a thrifty tree. When a tree becomes overrun, so as to dwindle and not afford a copious supply of nourishment, the number of eggs is reduced.
Under these scales I have also repeatedly met with a small maggot; three hundredths of an inch long, or frequently much smaller, of a broad oval form, rounded at one end and tapering to an acute point at the other, soft, of a honey-yellow color, slightly translucent and shining, with an opake brownish cloud in the middle, produced by alimentary matter in the visera; and divided into segments by faintly impressed transverse lines. This is probably the larva of some minute Hymenopterous insect, specially designed by Providence for destroying the eggs of the bark louse. That these eggs are its food is shown by the fact that when the maggot is small a number of eggs are found under the scale with it, when it is larger the eggs are fewer. The individual from which the above measurement and description was drawn, had but two eggs remaining for it to consume. Whether the maggot be larger or smaller it, with the eggs, appears to completely fill the cavity beneath the scale, and I have only met with this parasite upon thrifty trees, where each scale had a large number of eggs beneath it. It doubtless remains beneath the scale during its pupa state, and then makes it exit by perforating a small round hole through the scale. Scales which are thus perforated may frequently be met with. Our cut represents a scale magnified and perforated for the escape of a parasite, the short line on the right hand side of the figure indicating the natural length of the scale.

The eggs are somewhat less than the hundredth part of an inch in length; they are of a regular oval shape, about twice as long as broad, smooth but not shining, opake, most of them of a white color, others dull pale yellow.

As early as the 12th of May I have found individual larvae hatched, and running about with much activity among the eggs, but remaining under the scale for protection. It is not till about a fortnight later that the eggs mostly become hatched, and the young crawl out from under the scale and scatter themselves over the bark. To the naked eye they appear like minute white dots, uniformly diffused over the smooth bark of the twigs, and appearing like natural white points or glands of the bark. A person to whom I once pointed out these white specks was reluctant
to believe they were anything else than white dots natural to the smooth young bark, until by careful watching some of them could be perceived to be moving about upon the bark.

When first hatched from the egg the larva is but about half the size of the egg, of an oval form and a pale dull yellow color. Three pairs of legs are perceptible, two placed anteriorly, the other posteriorly and distant. It walks about with much life and agility. I have not traced this insect through the subsequent stages of its life with sufficient accuracy of observation to give its history.

A number of remedies for the bark-louse will be found reported in late volumes of the Prairie Farmer and other western agricultural papers. The secret remedy which was hawked through that section, as perfectly sure of destroying these lice, was simply an infusion of quassia, with which the trees were to be wet from a syringe or watering pot. This of course was soon discovered to be worthless, or effectual only when applied to the young newly hatched lice, at which time infusion of tobacco or soap suds would be a more economical and still more effectual remedy. These, and also strong lye, potash water, whitewash, dry ashes, sulphur, and I know not how many more articles have been recommended by different writers. In a late number of the Michigan Farmer (vol. 13. p. 82), A. G. Hanford gives a very favorable account of the effects of tar and linseed oil, beat together and applied warm with a paint brush thoroughly, before the buds begin to expand in the spring. This, when dry, cracks and peels off, bringing off the dead scales with it. Trees which were thus treated grew from two to two and a half feet last summer, which had advanced only a few inches in previous years. The remedy to which Esq. Kimball, of Kenosha, resorts, is probably one of the most efficacious, and as convenient as any; he boils leaf tobacco in strong lye till it is reduced to an impalpable pulp, which it will be in a short time, and mixes with it soft soap, (which has been made cold; not the jelly-like boiled soap,) to make the mass about the consistence of thin paint, the object being to obtain a preparation that will not be entirely washed from the tree by the first rains which occur, as lye, tobacco water, and most other
washes are sure to be. The fibres of the tobacco, diffused through this preparation, cause a portion of its strength to remain wherever it is applied, longer than any application which is wholly soluble in rain water can do. He first trims the trees well, so that every twig can be reached with the paint brush, and applies this preparation before the buds have much swelled in the spring. Two men, strictly charged to take their time, and be sure that they painted the whole of the bark to the end of every twig, were occupied a fortnight last spring in going over his hundred and fifty young trees. When I saw his trees, the latter part of September, this composition was still plainly to be seen upon the rough bark of their trunks and upon the under sides of their limbs, resembling a whitish mouldiness of the bark. The trees had grown very thriftily, and yielded well, whilst only a single scale could here and there be found upon the twigs of the present year’s growth, all the older parts being entirely free from them. Although trees perishing with lice were standing in the adjacent yards and gardens, it seemed these insects preferred starvation at home rather than being poisoned by invading these trees, hence it appears that one thorough application of this preparation is sufficient to destroy all the insects upon the trees, and to protect them from invasion from neighboring trees for a period of two years; for free as the trees were from these insects in September, there can be no call for a renewal of this composition upon them the coming spring.

Wounding the twigs and causing them to wither and fall; a very large black fly with four glassy wings, with orange-colored ribs and red eyes.

The Seventeen-year Locust, *Cicada septemdecim*, Linnaeus.

On some accounts the Seventeen-year Locust is the most remarkable insect of which we have any knowledge. The unusual length of time which it requires for completing its growth, and the perfect regularity with which every generation, numbering many millions of individuals, attains maturity, so as to come forth at the end of seventeen years, the entire brood hatching within a few days’ time, has caused this more than any other American
insect to be noted throughout the world. And it was, doubtless, from its suddenly appearing in such vast numbers, at long intervals of time, like the Migratory Locust of the East, that the early settlers of this continent gave it the name of "Locust," by which it is now universally designated; although it is wholly unlike those insects which are properly termed locusts, both in its form and habits.

Another remarkable fact with respect to this species is, that in different districts of our country broods appear in different years; yet the brood of each district invariably preserves the interval of seventeen years for coming out in its winged state. We have three of these broods partly within the bounds of the State of New-York, and there appear to be at least six others in other parts of the United States.

One of these inhabits the valley of the Hudson river. Its northern limit is the vicinity of Schuylerville and Fort Miller, and this appears to be the most northern point to which this species anywhere extends. From thence it reaches south along both sides of the Hudson, to its mouth, where it extends east, at least to New-Haven in Connecticut, and west across the north part of New-Jersey and into Pennsylvania. Its last appearance was in the year 1843, and it will consequently make its next appearance in 1860.

The second brood occurs in Western New-York, Western Pennsylvania and Eastern Ohio. The last year of its appearance was 1849; it will consequently reappear in 1866.

The third brood appears to have the most extensive geographical range. From the southeastern part of Massachusetts it extends across Long Island and along the Atlantic coast to Chesapeake Bay, and up the Susquehanna at least as far as to Carlisle in Pennsylvania. And it probably reaches continuously west to the Ohio, for it occupies the valley of that river at Kanhawa in Virginia, and onwards to its mouth, and down the valley of the Mississippi probably to its mouth, and up its tributaries, west, into the Indian territory. This brood has appeared the present year, 1855, and I have received specimens from Long Island, from
Southern Illinois, and the Creek Indian country west of Arkansas, these last having been gathered by my friends, Robert W. Kennicott and William S. Robertson. They show that from one end of this vast stretch of territory to the other, the species is quite uniform in its size and marks. Mr. Robertson, writing from Tullehassie, under date of May 24th, says: "I have heard the Seventeen-year Locusts for ten days past, but they are not plenty here. At Park Hill, however, twenty-five miles south of this, in the Cherokee country, they are very numerous, and in these hungry times, occasioned by the severe drouth of last year and this spring, the people are glad to gather and eat them."

A fourth brood, and which has been the ofteneast and most fully noticed of any, reaches from Pennsylvania and Maryland to South Carolina and Georgia, and, what appears to be a detached branch of it, occurs also in the southeastern part of Massachusetts. It was observed as long ago as 1715, and its reappearance has been recorded seven times since, the lastone of which was in the year 1851. It will consequently reappear in 1868.

A fifth brood extends from Western Pennsylvania, through the valley of the Ohio river, and down that of the Mississippi to Louisiana. This appeared last in 1846, and will therefore reappear in 1863.

A sixth appeared the past year around the head of Lake Michigan, and as far east as to the middle of the State of Michigan, and extended west across Northern Illinois and onwards, an unknown distance, into Iowa. It reached south at least as far as Peoria, and north to the line of Wisconsin. Mr. M. P. Weter, of Tirade, Walworth county, Wisconsin, informed me that a narrow strip, but about a mile in width, extended through his neighborhood, and onwards, north, for a distance of at least twenty miles.

A seventh is recorded as having appeared in the western part of North Carolina in the year 1847.

An eighth was noticed at Martha's Vineyard, Mass., in 1833.

A ninth was noticed in the valley of the Connecticut river, in Massachusetts, in the years 1818 and 1835.
It is possible that in some of these last cases other species may have been mistaken for the seventeen-year locust, and that in those instances where straggling individuals of this locust are reported to have occurred during the intervals between the appearance of the main swarm, other species have been confounded with this, particularly the Creviced cicada, (C. rimoso, Say,) which comes out in the same month, and in its colors, &c., closely resembles the C. septemdecim.*

I have personally met with this species in two instances; the first was upon the forenoon of the tenth of June, 1826, upon the oaks and other trees and shrubs between West Troy and Cohoes, which were covered with these insects at that date, making the neighborhood ring with the discordant din of their shrill song. After the long interval of seventeen years, in a grove in the town of Stillwater, the same note was heard again, and was instantly

* We have in our country several species of the large interesting insects which pertain to this family. The most common one in our State is the Dog-day cicada, (C. canicularis—Harris,) which probably is not distinct from the Frosted cicada, (C. pruinosa) of Say. It appears annually in most parts of the State in autumn. The Creviced cicada (C. rimoso—Say,) and also the Bordered cicada, (C. marginata—Say,) occur also within our bounds. Farther south the species become more numerous. Among a number of those sent me by Mr. Robertson, from the Creek Indian Territory, the following do not appear to have been hitherto described.

The Superb Cicada (C. superba) is of a rich olive green color, having a black band between the eyes, and six black spots upon the anterior margin of the middle segment of the thorax. The abdomen above is olive-yellow, with two mealy-white spots at the base. The under side is whitish-yellow, coated over with a mealy-white powder. The wings are clear and glassy, the apical row of cells of the fore wings and the hind margin slightly smoky; the veins are bright green, except those surrounding the apical row of cells, which are dark brown, and the two short anastomosing outer veinlets are margined with smoky-brown, forming the usual dusky W-shaped mark. This species measures an inch and three-fourths to the tips of the closed wings. It occurred in August upon two small elm trees growing two rods apart, beside a brook in the middle of a prairie, with no other trees near, and no elms within some miles of these. On climbing one of these trees the cicadas, of which there were a number of individuals, all flew to the other tree; on climbing this last they all flew back; so that on climbing one tree three times and the other twice, but a single specimen could be captured, so shy were they.

Robertson's Cicada, (C. Robertsonii.)—Green, variegated with brown and black; upper side of the abdomen black and shining, with two yellowish spots near the base; middle segment of the thorax yellowish brown, the elevated x green, and a large green spot at the end of each of its anterior horns; wings glassy-hyaline, their veins slender, green, becoming light yellow at their apices; rib of the anterior wing edged with black on its inner side; length to the tip of the closed wings, in the female, two inches and fifteen hundredths.
recognized, though at a distance of some twenty rods. As it was repeated at short intervals, I was able to draw near and capture the songster, who had come out some days in advance of the main swarm. The note, which is uttered only by the males, is peculiar, and may be represented by the letters tsh-e-e-E-E-E-E-e-eou, uttered continuously, and prolonged to a quarter or a half minute in length, the middle of the note being deaeasingly shrill, loud and piercing to the ear, and its termination gradually lowered till the sound expires. In a wood in the vicinity of Ottawa, Illinois, on the 22d of September last, I heard the note of a cicada identical with the above, except that the syllables were short, and uttered at regular brief intervals, thus, tsheeou, tsheeou, tsheeou, much resembling the creaking of a grindstone when in want of grease. This was probably some autumnal species, a native of that vicinity; but it might possibly have been a straggling individual of the seventeen-year locust, which had not completed his transformation until three months after his due time, and which uttered his notes in this hurried, impatient manner, upon finding himself "solitary and alone."

Circumstances may cause this insect to appear and disappear somewhat earlier at some of its visits than at others. Mr. Wright, editor of the Prairie Farmer, informs me that the Illinois brood last year had mostly disappeared upon the fourth of July, whilst the preceding visit of this same brood was in vigorous life and activity at that date, as was recollected from the fact that a particular neighborhood had met together to commemorate the day, in a barn, which was the most spacious edifice in the vicinity, and the company were much annoyed in their festivities by the incessant din which these locusts kept up in and around the building.

This insect dwells entirely in timber land, never inhabiting fields which have been cleared seventeen years, or the prairie lands of the west. It was noticed the past year as being more wide spread in many places in Illinois than it was on its previous visit. Fruit or forest trees, wherever they had been planted upon the prairies, were seventeen years ago destitute of these in-
sects, but the past year they came from the ground among such trees as abundantly as in the original timber lands. It has been commonly supposed heretofore that the larvae derive their nourishment from the roots of the trees upon which the eggs were deposited, puncturing the bark with their beaks and extracting the juices, and in this way it has been supposed that much greater injury was done to the trees than by the wounds made upon the twigs by the perfect insects. This view has been sustained by Miss Margaretta H. Morris, in an interesting communication to the Philadelphia Academy of Natural Sciences, and published also in Downing's Horticulturist (vol. ii. p. 16), in which she attributes the failure of pear and other fruit trees, in many cases, to the exhaustion of the sap, produced by these larvae fixing themselves upon the roots. On examining a pear tree which had ceased to thrive, she found that all those roots which were six inches or more beneath the surface were thronged with countless numbers of the larvae, clinging to them by means of their beaks inserted in the bark. From one root, a yard in length and about an inch in diameter, she gathered twenty-three larvae, varying in length from a quarter of an inch to an inch—a much greater disparity in size than could have been anticipated in larvae which were all of the same age.

The habits and nourishment of these larvae is a topic which needs further investigation. Mr. R. W. Kennicott, of West Northfield, Illinois, writes me that in the month of November in following down the roots of several trees and shrubs, the twigs of which were badly cut to pieces by the locusts last year, to the distance of a foot or more, he was unable to find a single one of these grubs, a strong indication that when young they descend deeper than Miss Morris supposes. And a more important fact is, that they subsist upon the roots of grass and herbs as well as those of trees. I learn from Dr. J. W. Moody, that at Spring Arbor, Jackson county, Michigan, in fields which had been cleared of their timber some sixteen years, and which have been under cultivation most of the time since, the locusts came forth last June as plentifully as in the timber land; and these seemed to have been equally as well nourished, for they were of the same
size, and came out of the ground upon the same day with those which appeared in the timber lands; nor were they any more plenty beneath two or three shade trees standing in the cleared grounds than in any other parts of the fields. In other places I was also informed of their coming from the earth plentifully in fields which had been cleared several years. Indeed, the pupae emerge in all situations, except where the ground has been wholly destitute of trees and shrubs for seventeen years or more. They even work their way out in the middle of the most solid and hard-trodden roads. This fact is noticed by Rev. Andrew Sandel in the first recorded notice which we possess of this insect, in 1715 (Medical Repository, vol. iv., p. 71), and was also stated to me by different persons in Illinois. It serves to show the remarkable strength which the anterior legs of the pupa must possess to enable it to dig through ground so compacted.

It is in the night time that the pupa (of which the accompanying figures, taken from specimens of C. rimoso, give a view) emerges from the ground. The warmth and dryness of the air by day would doubtless cause its exterior shell-like case to become stiff and crack open prematurely. Some of the pupa hatch upon the ground, near the holes from which they have emerged; others crawl up the sides of fences and upon bushes and trees, sometimes to a height of twenty feet. The pupa fixes itself securely by its feet, its thin shell-like covering cracks open anteriorly upon the back, and the inclosed insect withdraws itself therefrom, leaving the empty case adhering to the place where it was fixed.

The oak is the tree which the seventeen-year locust appears most to infest, for the purpose of depositing its eggs, and next to this is probably the apple tree. So numerous were these insects in several orchards in Illinois last June, and such injury did they threaten the trees by their wounds, that the proprietors were induced with poles and goads to whip and drive them from the trees. And B. S. Rollin, of Wyoming, Wisconsin, in the Wisconsin and Iowa Farmer of November last (vol. vi. p. 254), reports that in
his vicinity the oak and apple tree limbs were breaking off with every wind, at the point where they had been operated upon by the locusts, and that some of the trees were badly injured thereby. The editor of the Farmer, in commenting upon this communication, thinks that the damage will prove to be but slight, and will in reality be that "heading in" which is often serviceable to fruit trees. But it must be rare that our apple trees can be benefited by any heading in, all experience showing that the perfection of the fruit requires that this tree should be kept well trimmed, so as to permit a free circulation of air and light among its branches; and the same condition of the tree is one of its best safeguards against tree-hoppers, plant-lice, and many other insect enemies which particularly prefer situations where the foliage is dense.

In addition to the trees already mentioned, this insect deposits its eggs in the poplar, the locust, the hazlenut, and probably in all our deciduous trees and shrubs. The different species of walnut and hickory, however, are said to be exempt from its attack. It will probably prefer those trees having the twigs thick and robust, to those in which they are slender and flexile; it has even been known according to Dr. Harris, to commit its eggs to the white cedar, but it is probable that pines and the evergreens generally will be avoided by it.

Dr. Harris, (New-England Insects, p. 184,) gives the following description of the manner in which the female locust wounds the twigs and deposits her eggs. They select those branches and twigs which are of a moderate size. These they clasp on both sides with their legs, and bending their ovipositor downwards at an angle of about forty-five degrees, they repeatedly thrust it obliquely into the bark and wood in a longitudinal direction, at the same time putting in motion the lateral saws of the ovipositor, and in this way detach small splinters of the wood at one end, and turn them upwards, so as to form a kind of lid or cover to the perforation. The hole is bored in a slanting direction, to the pith, and by a repetition of the same operation, is gradually enlarged, forming a longitudinal fissure of sufficient extent to receive from ten to twenty eggs. The lateral pieces of the ovi-
Apples and juice of insect exudes, and supply after distance, and commences making another nest, to contain two more rows of eggs. She is occupied about fifteen minutes in making one of these slits and filling it with eggs; and frequently fifteen or twenty of these nests are formed upon one limb. Fifty nests have been counted in one instance, upon a single limb, extending along in a line, each containing from fifteen to twenty eggs in two rows—the whole appearing to be the work of one insect. After one limb is sufficiently stocked, the insect passes to another. She thus goes from limb to limb, and from tree to tree, until her supply of eggs, consisting of four or five hundred, is exhausted. And by her assiduous labors in thus providing for a succession of her kind, she becomes so wearied and weak as to fall to the ground, in attempting to fly, and soon dies.

From the wounds which are thus made in the limbs, the sap exudes, often profusely. This attracts numerous ants to the spot, to regale themselves upon this sweet fluid. The naturalist, Pontedera, who gave some attention to the operations of the insects of this family, says that when the eggs have been deposited, the insect closes the mouth of the hole with a gum, capable of protecting them from the weather. M. Reaumur thinks this is only a fancy, as he could discover nothing of the kind. But to us it appears quite probable that what Pontedera supposed was a gum which had been deposited by the parent insect, was the dried juice of the twig.

The fissures which the female makes, in which to deposit her eggs, are not the only wounds which this insect occasions upon the trees. It inserts its sharp beak into the bark for the purpose of sucking the sap, this being the nourishment on which the locust subsists. Although some of my correspondents express doubts
whether this insect takes any nourishment after it arrives at its perfect state, Mr. Weter informs me that an orchard of young trees upon his farm had the smooth bark of the trunk and limbs punctured profusely, and that the sap exuded copiously from these punctures; and Mr. Robertson makes the same observation.

It however is only those twigs and limbs which are badly wounded by the female in depositing her eggs, which perish and fall to the ground. But in this way extensive injury is often done. Mr. Thomas W. Morris speaks of having seen the tops of the forest trees in Pennsylvania and Ohio, for upwards of a hundred miles, appearing as if scorched by fire, a month after this locust had left them. (Horticulturist, vol. ii, p. 17.) Many of the wounded limbs, however, survive the injury which they receive.

The eggs of the locust are 0.08 long and 0.06 in diameter. They are of an oval form, rounded at each end, and of a white color. Statements are very conflicting as to the length of time that elapses after the eggs are deposited before they hatch, some saying it is but a fortnight, others that it is six or seven weeks.

The young larva, when it hatches from the egg is but 0.06 in length, and of a yellowish-white color, clothed with fine hairs, its eyes and the claws of its fore legs being tinged with red. It has six legs, of which the anterior pair is much the largest, resembling the claws of the lobster, and armed on the under side with strong spines. It is quite active and lively in its motions, and drops itself from the limb to the ground, in which it immediately buries itself by means of its fore legs, which are admirably adapted for digging.

The perfect insect varies from an inch and a half to nearly an inch and three-quarters in length, to the tips of its closed wings, and when these are spread, they measure from two inches and a half to three and a quarter across. It is of a coal black color, marked with bright orange yellow as follows—upon the transverse and oblique raised lines at the base of the thorax, a large spot on each side of the thorax forward of the wings, the whole under side of the abdomen in the males, but only the posterior margins of the segments in the females, the veins of the wings, the beak and the legs. Varieties occur having the feet black, the shanks marked with black towards their bases, this color either occupying the whole outer side, or merely forming a stripe on their anterior side. The anterior thighs are also black along their inner edge, including the spines which arise from this edge. The four hind thighs often have a black stripe along their posterior sides. The angular edges of the anterior hips are also black. There is commonly a small dull white spot in the groove on the middle of the head, behind the small simple eyes. The veins of the wings are margined each side by a slender black line; they become dusky at their tips, and the oblique vein, parallel with the apical margin, is black, and is
margined with smoky. The two outer anastamosing veinlets of the fore wings are black, with only a slender orange line along their middle, and are margined with smoky, forming a W-shaped mark, which superstition to this day, continues to a slight extent, to regard as portending "war." The small opake orange basal cell is black on its inner side, and the elevated vein running from the outer side of this cell to the base of the wing is also deep black, with a large black spot behind and a small one before its basal extremity, as seen when the wings are spread. The folded inner part of the hind wings is margined with smoky, and on its apical side with black.

Characters drawn from the veins of the wings, by which to discriminate the species, would appear from this insect to be of little value. Thus, the first, or outermost veinlet, or cross-vein as it is termed by Mr. Walker, is separated from the second veinlet about the distance of its length in the male, but often by double this distance in the female. The second veinlet is slightly curved in the male, whilst in the female it is straight, with a slight curve towards its inner end, and in one specimen before me it is abruptly bent, forming an angle of less than 135 degrees. It is of the same length with the first veinlet commonly, but is sometimes much longer.

It would be interesting to carefully study over a large collection of specimens of the seventeen-year locust, belonging to separate broods of this insect, and gathered from different localities, to ascertain if some marks cannot be detected by which the individuals belonging to each brood can be discriminated from the others.

When newly hatched from the pupa, the locust is soft, heavy, and sluggish in its motions. At this time, as I am informed by Mr. Kennicott, it is preyed upon by our large species of dragon-flies or darning-needles (Libellulidae), which seize and devour numbers of them.

Mr. W. S. Robertson informs me, that the Indians make the different species of cicada an article of diet, every year gathering quantities of them, and preparing them for the table by roasting them in a hot oven, stirring them until they are well browned.

Accounts of persons having been stung by the seventeen-year locust, and dying in consequence of the wound, are current in different sections of our country, every time this insect makes its appearance. The past summer, a newspaper article gave the name, residence, and particulars of the death of a young lady in Illinois, who was thus stung, stating the attending circumstances so definitely as to leave no doubt that the story was authentic. And it is possible that the sharp beak of this insect, or the ovipositor of the female, may inflict a puncture so extremely painful
as to cause death in a delicate person of irritable habits. But such instances must be extremely rare. The insect has been freely handled, times without number, by different persons, without its manifesting any malevolence or disposition to injure, and to secure a concert of their shrill notes, boys have been known sportively to imprison numbers of them in the crowns of their hats, without harm. Upon this subject R. W. Kennicott writes me as follows: "I consider the common idea that Cicadas can produce death by stinging to be highly preposterous. If it were so, I fancy I ought myself to be about a dozen corpses at this time, for I have handled hundreds of them in such a manner as gave them a fair chance to try their stinging powers on me, had they been possessed of such. I observed that when I pulled them off from a branch, while in the act of depositing eggs therein, they would often continue instinctively to work the ovipositing apparatus for some time; and should any one's hand or finger happen to be in the way at this time, it would be very apt to get severely pricked, such is the sharpness of the instrument."

AFFECTING THE LEAVES.

Small green lice without wings, accompanied by a few black and green ones having wings, all crowded together in vast numbers upon the green tips of the twigs and under sides of the leaves, sucking their juices.

The Apple Leaf-louse. *Aphis Malifoliæ*.

These insects pertain to the Order Homoptera and the Family Aphidæ. The Genus *Aphis* is at once distinguished from all other insects by having its fore wings with one longitudinal vein, the rib-vein, from which branches three oblique veins, the last or outermost one of which is twice forked. The insects of this family, and of the closely allied family Coccidæ or Bark-lice are among the greatest pests which the fruit grower and the gardener have to encounter. They are astonishingly prolific; and every kind of tree, shrub and herb, it is probable, has a species of louse infesting it, whilst many have two, three or more, each part of the tree having its peculiar species. Thus upon the apple tree,
we have already noticed the Apple root blight, a species of woolly louse producing excrescences upon the roots, and the Apple Bark louse. There is also the tree blight (*Eriosoma lanigera*), which infests the trunk and limbs. We come now to consider this species, which affects the young succulent ends of the twigs and the leaves, and another species which we have observed upon the leaves, which appears to be distinct from the *Mali*, though probably possessing the same habits. We thus have five kinds of these vermin infesting our apple trees.

In many instances it is extremely difficult to determine whether the lice upon our American trees and plants are identical with those which occur upon the same or similar vegetation in Europe, the descriptions given of them by the old authors being so very brief, and often drawn up from a superficial examination of the species. And I have heretofore been in much doubt whether this common Aphis of our apple trees was the same insect which similarly infests the orchards of Europe, named *Aphis Mali* by Fabricius; that species being described by him, by Kollar and others, as being of a green color, whereas, our insect in its winged state is almost invariably black, its abdomen only being green. But having recently been favored with specimens of the European insect, from my esteemed friend Dr. Signoret, of Paris, and also on comparing our Aphis with the description given of the European by M. Amyot, (*Annals Entom. Soc. France*, 2d series, vol. v. page 478,) and the detailed account of the veins of its wings, furnished by Mr. Walker, (*List of British Museum*, page 985,) not the slightest doubt remains in my mind, but that the insects of the two continents are identical, and that upon this side of the Atlantic it has been introduced by the trees brought hither from Europe.

The history of this species and its annual career is as follows: Early in the spring, sunk deep in the cracks and crevices in the bark of the apple trees, may be seen numbers of small, oval, black, shining eggs, from which these insects are produced. Scraping off the dead bark of old trees, and coating the trunks of all the trees with whitewash at that period of the year is a practice of much utility, since thereby most of the eggs of this and some other
insect depredators will be destroyed and the health of the tree promoted. These eggs hatch quite early, as soon as the buds begin to expand, and the young lice locate themselves upon the small, tender leaves, inserting their beaks therein and pumping out their juices. All of the lice thus hatched are females, and reach maturity in ten or twelve days. Without any intercourse of the sexes, these females that were produced from eggs, now commence giving birth to living young, bringing forth about two daily, for a period of two or three weeks, when having become decrepid with age, they perish. The young mostly locate immediately around the parent, as closely as they can stow themselves. Upon a young leaf, in a space less than half an inch long and the tenth of an inch wide, I counted thirty-six young lice and four winged females, which had recently alighted there to begin a new colony. The young reaching maturity after a similar length of time in their turn become parents. Thus these vermin continue to breed, and as fast as new leaves expand they are in readiness to occupy them. When favorable circumstances attend them, their multiplication surpasses all power of computation. In the warmth of summer they attain maturity in less than half the time they do early in the spring. And like most of the species of the Aphides they at this period of the year produce winged as well as wingless females, the former dispersing themselves to found new colonies upon other trees. It is reported of the insects of this family, that there are from sixteen to twenty generations in the course of the season, from twenty to forty-young being produced from each parent. Thus, from one egg, as stated by Mr. Curtis, in seven generations, 729 millions of lice will be bred. And if they all lived their allotted length of time, by autumn everything upon the surface of the earth would be covered with them. When cold weather begins to approach, males as well as females are produced, and their operations for the season close with the deposit of a stock of eggs for continuing their species another year. On the last day of last October, it being a warm sunny day, after many nights of frost, I observed myriads of winged and aperous lice wandering about upon the trunks, the limbs and the fading leaves of all my apple trees, many of them occupied in laying their eggs. These were scattered along in
APPLE LEAVES, PLANT-LOUSE—BLACKENS THE TREE.

every crevice of the bark, in many places piled up and filling the cracks, and others were irregularly dropped among the lichens and moss growing upon the bark—every unevenness of the surface, or wherever a roughness afforded a support for them, being stocked with as many as could be made to cling to it. The eggs were then of a light yellow or green color, and were so slightly glued in their places that it was evident by far the largest part of them would be washed away by rains or brushed off by the driving snows of winter. But I by no means anticipated such a great diminution in their numbers as actually occurred. I should judge that in the spring several hundreds had disappeared for every one that then remained.

The present year (1855) the apple plant-louse, as well as species infesting willows and some other trees, appears to be unusually prolific, and has excited much alarm among many owners of young orchards, for it is young thrifty-growing trees which are most infested by it. In one instance a gentleman came to me a distance of twenty-five miles, bringing specimens of this insect, to learn its name and what measures he could resort to for destroying it, and in the Country Gentleman of July 19, (vol. vi. p. 48,) is a letter from William Gilchrist, of Hebron, Washington county, giving an account of its depredations upon his trees, many of which were in danger of perishing unless they were relieved from these vermin. Norman Briggs, Esq., of Schaghticoke Point, informs me that particular varieties of the apple appear to be much more infested by this insect than other varieties; thus the Sour Bough, wherever it was growing in his grounds, was overrun with lice, whilst among the kinds least affected were the Northern Spy and Red Astrachan.

As already stated, this insect locates itself upon the green succulent shoots at the end of the twiggs, upon the under surface of the leaves, and upon the leaf-stalks. The leaves being of a comparatively stiff, leathery texture, do not become wrinkled and plaited like those of the peach, the snowball, and many other shrubs and trees; they, however, curve backwards, often to such an extent that the point of the leaf touches the stalk on which it grows, thus furnishing to the insect a comparatively secure covert
from rains and the night dews. The leaf-stalks also become bent, so that all the leaves growing upon a twig are, in badly-infested trees, turned backwards, pressing against the twig, and thus shielding that part of the colony which is located thereon. An infested tree may be distinguished at a distance of several rods by the leaves on the ends of its twigs being thus turned backwards, instead of standing freely out in their natural position. The bark of the limbs, and the surface of the leaves also, becomes blackened as if it had been smoked by the flame of a candle or other burning substance. This blackness does not rub off upon white paper, but Mr. Briggs informs me that washing the bark with a solution of sal soda removes it entirely. He had observed this black appearance of his trees before he noticed the lice which caused it, and seeing a newspaper-recommendation of this wash for cleansing trees, he applied it to four of those in his orchard. The next day he was astonished at finding myriads of these lice crawling down and up the trunks of these four trees, and upon the ground they were heaped together in a ring around their bases. The alkaline matter in this wash had evidently tinctured the sap of the tree, and made it unpalatable to these insects, and they endeavored to emigrate to some place free from it, but on reaching the ground they knew not where to go, and many, therefore, travelled up the trunk again in search of some other avenue of escape.

A strong disagreeable smell is also emitted from trees that are badly infested with the apple-plant louse, and when a person has been examining infested twigs this smell remains upon his hands. The odor is peculiar and very loathsome, and reminds me of the smell of stale fish more than anything else with which I am able to compare it.

All the insects of this family secrete copiously a sweetish fluid, called honey dew. This is ejected from the two little horns, or nectaries, which project one on each side of the hind part of their bodies. Often a clear drop of this fluid may be seen at the tip of one or both of these horns. This fluid, falling upon the leaves and evaporating, gives the leaves, under a colony of these lice, a
shining appearance, as though they were coated with varnish. For the purpose of regaling themselves upon this honey dew, or to destroy the aphides, different species of ants, flies, and quite a number of other insects are always found in company with them. Several of these, and their habits, will be more particularly considered at the close of our account of this species.

Grouped together, and covering the surface of the twigs and leaves which they infest, these lice are found in all stages of their growth. When newly born they are almost white, but soon become pale dull greenish yellow, which is their prevailing color during the larva period of their lives, the antennæ, the nectaries, the knees and feet being dusky, and sometimes black. The mature females are generally without wings, and their bodies are much broader than in the larva state, being shaped like an egg, the smaller end forward. These, as well as the winged individuals, vary greatly in their colors and marks, as will be seen from the description of this species and its varieties which we here give.

The wingless females are somewhat less than the tenth of an inch long, and are of a pale yellowish green color, with the head frequently more yellow than the body. Stripes of a deep green color are commonly present upon the back, or sometimes there is a single stripe in the middle, and transverse ones at each of the sutures or impressed lines between the segments, but these transverse stripes do not extend to the margin upon either side. The eyes are black. The beak, by which it pierces and sucks the juices of the twigs and leaves, the antennæ, and the legs, are whitish, their tips black or dusky, and the knees also are commonly dusky. The nectaries are equal in length to the distance from their bases to the tip of the abdomen, and are dusky or white, with their outer ends black. Protruding from the extremity of the abdomen, is a short tail-like appendage, nearly half as long as the nectaries, and of a black color. But in females examined in autumn, at the time of depositing their eggs, this appendage was not observed. I hence infer it pertains only to those which bear living young.

The males and the winged females appear to be alike in their colors. They measure about 0.12 to the tips of the wings, this being double the length to the tip of the abdomen, or more. The head and thorax are of a coal black color, with the neck commonly green. The antennæ are inserted upon the front part of the head, between the eyes. They are black, slightly tapering towards their tips, scarcely as long as the body, and slightly covered with very fine short hairs. They are seven-jointed, the two basal joints short and thick, almost as broad as long; the third joint is longest of all, and often shows several slight equidistant constrictions, dividing it seemingly into several short joints; the fourth and fifth joints are equal, and each but little
shorter and more slender than the third, whilst the sixth is but half as long, and the seventh is double the length of the sixth, and quite slender and thread-like. The abdomen is short and thick, of an oval form, and obtusely rounded at its apex, of a bright grass-green color, with a row of black dots along each side forward of the nectaries, one dot upon each segment. On its under side at the tip, are two square brown spots, more or less separated from each other as the abdomen is distended with aliment in a greater or less degree, and above the apex are often three short blackish transverse stripes. The tail-like appendage in the female is black, and about a third as long as the nectaries, which are also black, and if pressed against the abdomen, would reach its tip in the females, but are shorter in the other sex. The legs are pale dull yellow or whitish, with numerous even hairs; the feet, tips of the shanks, and of the thighs, black or dusky; the hind thighs black, except upon their basal third. The wings are transparent, but not perfectly pellucid, the stigma or opake spot towards the end on the outer margin, is dull white, and the veins are dark tawny brown, the longitudinal rib-vein being paler and becoming whitish towards its base, the third or forked vein is abortive and colorless at its base, and, as in many other species, the first vein has a dusky mark from its tip, running upon the margin, towards the base. The first and second veins are more than twice as far apart at their tips as they are at their bases; the third vein is slightly farther from the second at its tip than at its base, and is a third farther, or more, from the second at base than this is from the first; the tip of the first fork is much nearer the tip of the second fork than that of the third vein, and is about the same distance from the tip of the third vein that this is from the second; the tip of the second fork is equidistant between the tips of the first fork and the fourth vein; the tip of this last is commonly twice as near the tip of the second fork as it is to that of the rib-vein.

Individuals have been observed, in which the wing-veins varied from their normal state as follows:

1. Tip of the third vein nearer that of the first fork than that of the second.
2. Common.
3. The second and third veins parallel with each other.
4. The second fork very short, its tip only half as far from the tip of the first fork as from that of the fourth vein.
5. Left wing with but one fork to the third vein, the second wanting.
6. Right wing with three forks to the third vein.
7. Left wing with the second vein slightly forked at its tip.

The following varieties in the colors and marks of this species may be specified. The greatest diversity in these respects occurs after the coming on of frosty nights in autumn, it being then difficult to find two individuals with precisely the same hue and marks. This diversity is undoubtedly produced by the cold to which the insects have been exposed, and the unhealthy juices of the faded and decaying leaves which now furnish the only nourishment which is accessible to them. It might hence be deemed that the whole race was now in a diseased state, if it were not that sexual intercourse takes place freely, and the females are all industriously occupied in depositing their eggs.

Variety a, pallidicornis. The antennæ brownish yellow instead of black. Young individuals.
Variety b, nigricollis. The neck not green, but of the same black color as the head and thorax. Common among aged individuals.

c, thoracica. The thorax dull green, with a black band forward of its middle. Young.

d, fulviventris. The abdomen pale dull yellow instead of green.

e, nigriventris. The abdomen greenish black, with the row of black dots along each side, indistinct.

f, immaculata. The abdomen without any dots or darker colored marks.

g, obsoleta. The lateral row of black dots faint and scarcely perceptible.

h, triseriata. A row of black dots along the middle of the back, as well as upon each side of the abdomen.

i, bivincla. Two black bands towards the apex of the abdomen, on its upper side.

j, tergata. Abdomen above, with two black bands towards its tip, and three rows of black dots anteriorly.

Several specimens of Plant-lice which I gathered from the leaves of Apple trees, in Mercer county, Illinois, upon the 4th day of October last, and which at the time of capturing them I supposed were varieties merely of the common species which we have been considering, prove on examination to pertain to a different species. They are of a size larger and of a shining black color throughout. In the common species the legs are uniformly pale with black feet and knees, the preserved specimen showing this character almost as distinctly as living individuals; in these specimens on the contrary the legs are entirely black, or at most brownish yellow at their bases in some instances. The wing-veins moreover differ notably from those of Aphis Mali in several points. They are more slender, and the fourth vein is relatively shorter and more strongly curved through its whole length. In consequence of this curvature it is nearer to the second fork at its base than at its tip. Two-thirds of the specimens which were captured at that locality coincide with each other in these differences. This fact would indicate this to be a more common species upon the Apple trees in Illinois than the Aphis Mali; but its darker color and larger size rendering it more conspicuous than that species, may have occasioned a disproportionately larger number of this species to be gathered. It may appropriately be named the Apple-leaf louse (Aphis Malifolii). The specimens show the following marks in addition to what has already been stated:

The Apple-leaf louse measures 0.15 to the tips of its wings. The third vein of the fore wings is but slightly abortive at its base. The second and third
veins are parallel with each other, or in some instances are nearer at their tips than at their bases. In *Aphis Mali* the first fork branches from the third vein beyond its middle. Here it is given off much lower down, at about a third the distance from the base to the tip. Commonly the second fork is here half as long as the first fork; in *Aphis Mali* it is much shorter. The tip of the fourth vein is as near that of the rib vein as it is to that of the second fork. The callous point on the outer margin of the hind wings is much more distinct in this species, and here the two oblique veins branch from the rib-vein at a much less acute angle than in *Aphis Mali*.

We come next to speak of the remedies for destroying these vermin.

Drenching the vegetation infested with any of the species of *Aphis* with strong soap-suds or weak lye is a measure which has been much recommended, and is certainly one of the most efficacious within our knowledge. But it is those insects only which are wetted by the solution that are destroyed. These are creatures which "sprinkling" will not cleanse from the tree; "immersion" must be resorted to. As it is the green succulent ends of the twigs of young thrifty trees, and the leaves growing from these parts that are most infested and liable to be seriously injured, they may be rid of these vermin to a great extent by preparing a solution of soft soap in a tin pan or other convenient vessel, and whilst one person holds this under the infested twigs, let another person bend them one after another down into it, holding them there for several seconds. This will, in most cases, destroy all of the lice upon the twigs and leaves which are thus immersed, and will cleanse and impart new vigor to them. But this is by no means so infallible a remedy as some writers have represented it to be. Some of the lice, perhaps from being more hardy than the generality of their race, will survive. It, however, will reduce their numbers so far as to allay all fears of immediate injury to the trees from this pest.

Instead of a solution of soft soap, a writer in a late number of the American Agriculturist, (vol. xiii. p. 295,) recommends thoroughly rubbing this substance about the trunks and limbs two or thee times a year. It is very probable that thus applied, a sufficient amount of the alkaline matter would be absorbed and taken into the circulating fluids of the tree to render these fluids distasteful, and perhaps poisonous to the *Aphisides*. We have al-
ready seen how repulsive to these insects the trees of Mr. Briggs, immediately became upon being washed with a solution of soda.

Tobacco water, prepared by pouring a gallon of boiling water upon a quarter of a pound of tobacco, and used in the same manner as above directed in the case of soap suds, has been reported as a certain remedy. Moses L. Colton, of West Bolton, Vermont, says (Country Gentleman, vol. vi. p. 78), a nursery of about twelve hundred Apple trees became so infested with lice that most of the trees turned black and the leaves withered and died, until he tried tobacco water, prepared however, much stronger than above recommended. This completely destroyed the insects, and the leaves they had killed having fallen off, new ones started out. For six years past he has been obliged to resort to this more or less every year, in his nursery and orchard, and he finds it an effectual remedy when made strong enough. He prepares a decoction, made by boiling four or five pounds of tobacco in water sufficient to nearly fill a tin pan.

The remedy which is admitted on all hands to be the most effectual, and sure of ridding infested vegetation of every aphis upon it, is the smoke of tobacco. But unfortunately this can only be resorted to in the case of rose bushes and other low shrubs or small trees. For enclosing a shrub to be operated upon, gardeners abroad use a large box, a hogshead, or a kind of small tent humorously described some time since by Prof. Lindley (Gardener's Chronicle, July 11, 1846,) under the name of a "parapetticoat," made by sewing the upper end of a wornout but entire petticoat to the outer edge of an opened parasol that has been thrown aside, any holes in its cover being first mended, and a staff six feet long securely tied to its handle. The petticoat being then raised up in folds to the parasol, the staff is inserted into the ground under the centre of the infested shrub, and the petticoat is drawn down to surround and inclose all of the foliage of the shrub. The interior is then filled densely with tobacco smoke for the space of five or ten minutes, or long enough to insure the fumes penetrating every curl, plait and crevice of the foliage. The apparatus is hereupon removed, and the foliage immediately washed with lukewarm water from a large syringe.
else it too would be liable to be destroyed. This utterly exterminates the aphis from the shrub, every insect being suffocated and dropping from the plant, so that

"unnumbered corse s strew the fatal plain."

One measure more, and this the most important of all, whereby to subdue these insects, remains to be stated. A person who is acquainted with the aphides, and the several kinds of other insects which prey upon and destroy them in different ways, will never permit a valuable tree or plant to suffer injury from them. He will at once repair to the hedges and borders of the forest in his vicinity, and with a beating net, such as is used by entomologists for gathering insects, or an open inverted umbrella, or some other implement convenient for this purpose, he will soon collect from the foliage a few scores of these natural enemies of the plant-lice, and conveying them alive in small boxes and vials, will set them free upon the tree or shrub that is infested. Most of these being in the larva state, and without wings, will not leave their new situation so long as any food for them remains there. This is said to be the remedy to which all the more intelligent French and German gardeners are accustomed to resort in an emergency of this kind. The rapidity with which these natural enemies of the aphides not only suppress but utterly exterminate them, in instances where they are so multiplied and excessively numerous as to seem unconquerable, is truly surprising. At one time the present season (1855) the cherry trees in my grounds became overrun with the Cherry plant-lice—to be considered hereafter, to such an extent that the under surface of the more young and tender leaves, and the succulent ends of the limbs and twigs, were all covered and black with them. If not checked it was evident that every tree would soon perish. I was about to import from the neighboring fields and forests a stock of the natural destroyers of these pests, when I found on examination that nature had already scattered numbers of these everywhere among the aphides. All apprehensions as to the result were hereupon at once allayed. A week afterwards, upon a careful inspection, not a single aphis could anywhere be found upon these trees. Of the teeming millions which were revelling there so recently, a
few of the empty, shrivelled skins, adhering to the leaves, was all that remained:

We have seen the prodigious increase of these creatures which would take place if they were allowed to multiply to the extent they are susceptible of doing. Such is their fecundity, that if no check was given them, it is evident, that from the cedars of Lebanon to the hyssop upon the wall, every leaf and spear of vegetation springing from the bosom of mother earth, would be thronged and blighted by the countless myriads which would be produced in the space of a few months. Fortunate indeed is it for man that in this, as in so many other instances, Providence has furnished remedies for an evil which would otherwise be so calamitous—remedies which are far more effective than any which human skill has been able to devise. As this family of insects appear to outstrip every other in the rapidity with which it is liable to multiply, to keep it restrained within its appropriate bounds means more efficient are here requisite than elsewhere, and we accordingly find that the aphides have enemies more numerous, more active and inveterate, than any other group in this department of the works of nature. Whole families of other insects, some of them numerous in species, appear to have been called into existence chiefly for the purpose of feeding upon and destroying these vermin, and an acquaintance with the several kinds of insects which, in our country, occur in company with these pests of vegetation is quite important, that we may know which to destroy or pass by in indifference, and which to cherish and protect, and call to our aid in instances where nature herself does not furnish them in sufficient numbers.

By far the most constant comrade of the aphis is the ant. One species or another of this family of insects (Formicidae) is almost invariably found wherever a colony of plant-lice have established themselves. By this means we frequently discover colonies of these insects which would escape our search if our attention was not attracted by these larger sized sable colored attendants. The fondness of the ant for sweet substances is well known, as it is always prowling about cupboards and other places where saccha-
rine matters are kept, and it is for the purpose of feeding upon the honey-dew that the aphides secrete so copiously that they are such constant attendants upon these insects. The mode in which they obtain this from the plant-lice is quite interesting; with their long flail-shaped antennae they gently touch the backs of the plant-lice, whereupon these eject this sweet fluid, which stands in the form of a small clear drop at the tip of one or both of the nectaries or little horns towards the end of their bodies. This the ant immediately sips, and by passing from one aphis to another he obtains his fill of this delicious sweet. A family of ants is thus supplied with an important part of its nourishment by discovering a tree on which the aphides have located themselves, and thereafter one after another of the ants may always be seen passing up and down the trunk of the tree. Plant-lice have hence been styled the kine or cattle of the ants, as they come to them regularly to milk them as it were, and in return for this savory food which they furnish the ants, some of the latter remain constantly by them night and day to protect these small weak creatures from being molested by their insect or other enemies. Thus before we are able to inspect a colony of plant-lice we are first obliged to brush off or destroy the ants which are guarding them, and I have frequently noticed that when a colony of aphides is newly established, and before it has been found by these insects, it remains small and does not thrive and increase so rapidly as when nursed and guarded by these industrious heroic creatures. Thus a colony of the Cone-flower plant-lice (*Aphis Rudbeckiae*) a species which I described in the Fourth Report of the State Cabinet, page 66, which has been established more than a fortnight upon a stalk of golden rod (*Solidago*) near my door, although it has not been molested by any destroyer, numbers only twenty-five individuals, and these are scattered about upon the stalk and leaves, seemingly pining in want of their accustomed attendants to herd and nurse them.

The species of ant which I have most frequently met with, associated with plant-lice upon the apple tree, is a large black ant, with a dark red thorax, and is very similar in its size and colors to the wood-eating ant, (*Formica herculeana*, Linn. *F. lignivora*,}
which excavates its burrows in the trunks of old and decaying trees, in which it is sometimes met with in countless numbers. And I am not without suspicions this may be a variety of that species rendered darker in its colors by being more exposed to the light and air. It is much darker colored than the species alluded to, its thorax being deep chestnut red, and its legs black, with the thighs tinged with chestnut red, but always darker than the thorax, instead of being of the same color as we generally find them in _F. herculeana_. These and other differences to be specified, appear to be constant, occurring in all the specimens which I find attending the aphides of the apple and other trees, and induce me to regard it as a distinct species, which I propose to distinguish under the name of

The New-York Ant (Formica Novboracensis). The neuters are uniformly about 0.30 long. The body and legs, as in _F. herculeana_ are covered with very short fine appressed hairs, which on the head and body are interspersed with a few longer erect bristles, whereof several are clustered upon the elevated posterior part of the thorax, others stand out from the edge of the wedge like scale at the base of the abdomen like eye-lashes, and others are arranged in transverse rows upon the abdomen, of which there is one upon each side of each suture. The scale at the base of the abdomen, instead of being the same red or yellow color as the thorax, or only somewhat dusky at its summit, is here black, with its base only sometimes dark red. The posterior face of this scale in _F. herculeana_ has a broad shallow concavity, like the hollow of the hand, whilst here it is merely flattened, or in some instances has a small concavity in its middle. In the preserved specimen, the edges of the abdominal segments, especially the basal one, are often membranous and of a pale dull yellow color; and a variety occurs in which the anterior suture is impressed or constricted.

In addition to ants, different kinds of wasps are common, hovering about the foliage of trees infested with plant-lice. Most of these appear to be attracted to them on the same errand with the ants, namely, to regale themselves upon the honey-dew, without molesting them further than to obtain this fluid. Thus I have observed our common Blue wasp, (_Pelopæus caeruleus_, Linnæus) the base of whose abdomen is contracted into a long slender penduncle, standing beside a colony of lice, and turning its head from side to side, gently touching their backs with its antennæ, hereby tickling and causing them to eject their honey dew, and their mouths following in the track of the antennæ, sipping up this fluid. Our common hornet or "yellow jacket" (_Vespa
maculatu, Linnaeus) is also frequently noticed in the same situations. These insects are so much larger and more powerful than the ants that the latter make no attempts to drive them away as they do most other intruders. They quietly stand aside and permit the large wasp to pilfer from them what would serve as a meal for a dozen of their own family.

Other wasp-like insects, of a smaller size, pertaining to the family Crabronidæ, seize and carry off the plant-lice. These excavate holes in decaying posts, rails and similar situations, and collect young spiders for food for their young, several of the species gathering plant-lice for the same purpose. These they enclose in the same cells in which they drop their eggs, the egg being in the bottom of the cell, often attached to the end of the abdomen of an aphis, that the young worm when it hatches may find its food placed directly in contact with its mouth; and the exact quantity of food is put into each cell before it is sealed up, which the worm will require for bringing it to maturity. But the most astonishing trait in the instincts of these small wasps, is their manner of preserving the spiders and other food which they gather. The wasp is evidently aware that if it kills the spider or aphis before packing it in its cell, it will become putrid and unadapted for the nourishment of the worm before the latter will hatch from the egg. On the other hand, if the young spiders are enclosed in the cell alive and in full vigor, their incessant struggles to escape from their prison will wound and destroy the egg or the young tender worm which is in the same cell. How is the wasp to proceed in this dilemma without salt or spices with which to preserve from putrefaction the stock of provisions which she amasses? Nature has furnished her with a resort for effecting this, superior to any known to man for a like purpose; and if some chemist, taking the hint from these little insects, could devise some analogous mode whereby we might preserve animal food for weeks in all the perfection it has when newly slaughtered, it would be a discovery conducive to human health and comfort equal to any of the other great discoveries of this remarkable age. The wasp on seizing her prey appears to sting it slightly, injecting into the wound only so much venom as will
serve to paralyze and stupefy her victim, without killing it. It remains alive, but lies perfectly still and passive. The insects thus prepared are stowed away in the cells of the wasp as skillfully and compactly as the most expert packer in our slaughter houses fills his barrels. The farmer in repairing his fences will sometimes notice on splitting a decayed rail or stake, holes excavated therein and filled with young spiders, commonly of bright beautiful colors, which lie still and quiet, with only a slight quivering of their limbs, and is puzzled to know why, when thus broken in upon, they do not awake from their lethargy and run away, little suspecting the manner and purpose of their being accumulated there. And similar interesting and curious phenomena are passing under the farmer's eye daily, as he pursues his labors—phenomena which, if

"In nature's infinite book of seersery
A little he can read,"

aid in rendering his vocation beyond all comparison the most pleasant of any pursuit known to man.

In addition to ants and wasps several kinds of flies are common about cherry and other trees infested with plant-lice, being attracted hither, like the ants, for the purpose of sipping the sweet honey dew. One of these which is common during the month of July, and which will be most likely to attract notice, both on account of its prim neat appearance and the briskness of its gait when walking, is a small blackish green fly, with clear glass-like wings, which are crossed by three black bands. With its wings extended horizontally outwards, and often gently waving them up and down, with many abrupt turns it walks with a rapid pace up and down the limbs, and out upon the leaves in the vicinity of colonies of plant-lice. It is so tame that if the hand has hold of a limb it fearlessly walks around upon it. But the most curious part of its movements can only be seen with a magnifying glass. Watching its opportunity, when the ants have all left a herd of their cattle, the plant-lice, unguarded, it runs in upon them, where they are crowded together, as closely as they can stow themselves, and using its four hind legs for walking and turning around, with its two fore feet it gently scratches
upon the backs of the lice, its feet at this time moving with incredible rapidity, corresponding exactly with those of a dog when eagerly occupied in digging open the hole of a woodchuck; at the same time the lips at the end of its beak are held down between its fore feet, instantly sucking dry every particle of honey dew which the lice, having their backs thus briskly irritated, incontinently spirt out. Thus in a moment the fly runs about over the backs of the whole flock, milking every one of them "dry," as a dairyman would express it, and filling himself with the delicious sweet. But rapid as the fly is in doing this work, he finishes it none too soon for his own safety, for any ant that is near by, from a cry or some other signal given by the lice, seems immediately to know that a thief has broken in among the flock, and with his utmost speed hastens to the spot. As soon as the ant approaches, the fly takes to his heels, as if aware he might come off minus a leg or a wing, if he allowed the enraged ant to grapple him. And the ant now with his antennae gently strokes the backs of the aphides, as if soothing them after such rude treatment, and assuring them of his future watchfulness and protection.

This fly pertains to the genus Tephritis, in the Ortalidan group of two-winged flies (Family Muscidae, Order Diptera). Though of the same size it is clearly a different species from the Tephritis 4-fasciata of Macquart (Exotic Diptera, ii. 226), and also from his 3-maculata, two species which inhabit our southern States. It may be named the Honey-dew fly, or the Honey-dew Tephritis, (T. melliginis.)

It measures about 0.23 to the tip of its abdomen, and 0.28 to the end of its wings. It is polished and shining, its head black, the orbits of the eyes margined above with white; the thorax is dark green and the abdomen greenish black; the under side of the abdomen, when distended, is of a dull reddish or yellowish brown color and somewhat hyaline, with a broad black stripe in the middle, which is interrupted at the sutures; the legs are black, the basal joint of the feet dull yellow; the wings are perfectly colorless and pellucid, and are crossed upon the disk by three black bands, which are narrower than the intervening spaces; the middle and inner of these bands are oblique and shorter, not reaching the inner margin of the wing, and the inner one is broadly dilated towards its anterior end, which dilatation is extended along the margin of the wing to its base. The outer one of these three discoidal bands is confluent at its anterior end with a fourth band which is situated upon the anterior apical
margin. These four bands upon the wings thus present a resemblance to the Roman numerals VII placed in an inverted position.

Another of our New-York species of *Tephritus* is closely related to the one now described, and probably has the same habits, though as I have met with it but seldom, I have not had an opportunity to observe its movements. It is slightly smaller than the honey dew fly, and like it has four black bands upon the wings, but here these bands are broader than the intervening spaces, and the two inner ones are confluent at their posterior ends, which do not reach the margin, whilst the two outer ones are confluent at their anterior ends, the bands thus resembling an upright letter V followed by an inverted one. The other band, moreover, only touches the margin at its ends, and the wings are somewhat opaque and of a white color, with only the axillary portion hyaline. The head and antennae are light yellow, the face white; the thorax is black, with a milky-white stripe on each side and four broad ash-gray stripes above, the outer ones interrupted towards their anterior ends; the scutel is white and waxy, or porcelain-like; the abdomen is black, with the posterior edges of its segments whitish; the feet and shanks are yellow, the thighs black. I name this, in allusion to the marks upon its wings, the Lettered Tephritis (*T. tubellaris*).

In this connection I may observe that the fly named *Tephritis Asteris* by Dr. Harris (New England Insects, p. 498,) the larva of which infests the stalks of our American Aster producing globular swellings or galls therein, the size of walnuts, I have never met with. But a larger species, attacking the *Solidago* or golden-rod in the same manner, is quite common in eastern New-York. This fly, however, pertains to the genus *Acinia*, which has been separated from *Tephritis* by Desvoidy. Every farmer’s boy has noticed how the slender, straight, smooth stalk of the golden-rod, growing with other weeds along old fences, quite often has one and sometimes two large round galls or ball-like swellings upon them, an inch in diameter, when the stalk above and below is less than a quarter of an inch. And many have had the curiosity to cut into these balls, and have found a plump well-fed white maggot in their centre. By the first of August the swellings have about completed their growth, although the worm within is as yet so small as to be scarcely perceptible to the naked eye. In the winter season, the leaves having fallen and left the stalks naked, these balls are more frequently observed; but at this period of the year most of them are found to be empty, with a round hole perforated in them, the worm having completed its growth and the winged fly having come out through this perforation the preceding autumn. But occasionally one of these balls
is found at this season without any hole in it. In these the worm is still remaining, to complete its changes and continue its species the coming summer. And if one of these balls be placed in a tumbler with a piece of paper tied over it, the fly can in due time be obtained therefrom. Its form and size is much like that of the common house-fly, but it has an odd appearance from its wings being opake and of a tawny brown color, with clear spots upon the inner margin and at the tip. It may appropriately be named the Golden-rod fly (*Acinia Soliduginis*).

This fly measures from 0.35 to 0.40 to the tip of its wings. Its body is of a pale brownish yellow or a tawny whitish color with two darker brown stripes above upon the thorax. The antennae, mouth and legs, are dull yellow, the face white, and the top of the head yellowish or reddish brown, with a blackish spot at base where the three ocelli or simple eyes are situated. The wings are tawny brownish-yellow, with blackish clouds, and with several dots, and the veins lighter yellow. On the outer margin beyond the middle, are two small triangular hyaline spots, and a third longer one inside of these, a large transverse hyaline spot on the apex, and two large triangular ones upon the inner margin, the inner one being larger and prolonged upon the margin to the base. Upon the margin of the wing, in these large hyaline spots are some tawny yellowish dots or small spots, namely, three in the apical spot, one in the smaller triangular one, one or two in the larger triangular one, and three where this last spot is prolonged in the axilla.

Another pretty species of *Acinia*, which is commonly found resting upon brakes in our meadows in midsummer, but which I have not yet discovered in its preparatory state, may be named the New-York *Acinia* (*A. Newboracensis*). It measures 0.35 to the tip of its wings, and is of a pale brownish or tawny flesh color, and like the preceding species, is clothed with a short stiff beard, which is of a silver gray color, with scattered black bristles. The orbital edge of the eyes is whitish, and the eyes, when the fly is alive, are of a pale coppery red color, crossed with three golden yellow stripes having a green reflection, the middle one of these stripes being broadest, and the upper one slightly narrower than the lower one. When dead the eyes change to blackish brown and the stripes to black, and they are now much less obvious. The antennae are pale, tawny yellow, with a simple black seta or coarse bristle on their upper side. The face is whitish, with two large black dots in the middle and one on each side between the antennae and the eye, and a transverse brown spot is placed on each side between the anterior part of the mouth and the eye. The abdomen is dull pale yellow, with the apical segments black except on their posterior margins. The wings are opake, black, with a slender, hyaline-white crescent upon their tips, the anterior horn of which is sometimes tinged with tawny yellow, and upon the middle of the anterior margin is a small streak of the same color. The whole wing is covered, except towards the anterior side and the apex, with numerous white dots, those in and towards the axilla being larger. In some specimens a pruinose powder of a more intensely white color forms a ring upon the margin of all the larger dots-
Similar to the fly last described, in size and in the dots of its wings, is another species which Macquart regards as being the *Tetanocera guttularis* of Wiedemann, although it differs slightly from his description. The genus *Tetanocera*, belongs to a small group of the Ortalidau flies, differing from the other genera in having the second joint of the antenna equal in length to the third joint, instead of being but half as long or less. Another character presented by all the species I have seen I do not observe noticed in books. The whole surface of the wings in our American Tetanocerides is finely striated with obtusely impressed lines and intervening ridges, which have a longitudinal direction towards the apex, and an oblique one towards the inner margin. These flies also subsist upon the honey-dew secreted by plant-lice, and, according to Desvoidy, their larva live, some in the unripe seeds of plants, others in the parenchyma of the leaves, stems or roots. In addition to the *guttularis* or Dotted-winged *Tetanocera*, we have, common in the State of New-York, a species which is probably the Canadian Tetanocera (*T. Canadensis*) of Macquart, although the spots in its wings are sub-hyaline rather than white, and there are six only of these spots in the outer or costal cell. Associated with this species is frequently found another, similar to it in size and colors, but without any sub-hyaline spots in the dusky outer and apical margins of the wings. From that part of our State in which I have captured this species, I propose for it the name Saratoga Tetanocera (*T. Saratogensis*), as the mineral waters in this neighborhood have given to the locality a world-wide celebrity.

The dried specimen of this fly measures 0.23 to the tip of the abdomen and 0.30 to the end of the wings. The head above is golden yellow with two small rusty stripes on its fore part, a black spot at base and dot each side anteriorly, almost in contact with the eye, and a second one, also black, on the anterior margin, between the eye and the antennae. Face silvery white. Antennae light yellow, second joint longer than broad, with fine short black bristles along its upper and under edge; third joint tinged with brown, narrow and curved, its upper side being concave, its lower side convex and nearly parallel with the upper side, but slightly narrowing towards the apex, which is rounded; seta yellowish white, plumose. Thorax pale dull yellow, with a faint darker stripe each side of the middle, which stripes have an ash gray reflection when viewed from the front; clothed with a short black beard and a few long black bristles. Scutel ash gray with two nearly erect black bristles each side. Poisers (the little pedicels back of the insertion of the wings, end-
ing in an oval knob) yellowish white. Abdomen dusky, clothed with a short black beard, hind edges of the segments pale dull yellow. Legs pale yellow, with a fine black beard, and the spine-like bristles at the end of the shanks black. Wings iridescent, smoky brown on the outer and apical margins, hyaline towards the axilla, the space between divided into numerous square hyaline spots by dusky longitudinal stripes, one stripe being placed in the middle of each cell, and sending short, transverse branches to the veins at regular intervals; veins and veinlets black.

Nearly related to the flies which we have been considering are those very singular ones, called Stem-eyed flies from having straight horn-like processes extending outwards from the sides of the head, upon the ends of which the eyes are inserted. These form the old Linnean genus *Diopsis*. About a dozen species are known, all inhabiting tropical Africa and the East Indies, with one exception—the Short-horned Stem-eye of this country, originally described by Mr. Say under the name of *Diopsis brevicornis*. As this species has the tubercles on which the eyes are inserted quite short, their length being less than their breadth, whilst in the other species they are much longer, and cylindrical, Mr. Say, in the third volume of his American Entomology, plate 52, proposed for it a distinct genus, which he named *Sphyracephala*. The European entomologists, however, ignore this genus and continue to arrange our species in the old genus *Diopsis*. I am somewhat surprised at this. A specimen from Senegal, ticketed *D. thoracica* by Macquart, for which and numerous other specimens of Diptera, I am indebted to M. Bigot, of Paris, indicates the foreign species of this tribe to be quite unlike ours in their general appearance. Having recently taken a second species closely related to the *brevicornis*, I think our two American species must be ranked as generically distinct from those of the old world. In addition to the extreme shortness of the ocular protuberances and the minuteness of the projecting points to the scutel and on the sides of the thorax towards its base, they are further distinguished by having an anastamosis between the costal or anterior marginal vein and the sub-marginal or short vein which runs into the anterior margin near the middle, this anastamosis taking place a short distance before the two veins unite. In the new species which I have alluded to a dusky spot or short band extends from this anastamosis across the two basal cells of the wing, and a second band half way from this to the tip
reaches nearly or quite across the wing, the same that it does in *brevicornis*, whilst the apex of the wing is hyaline, without any vestiges of the dusky spot which occurs at the tip of the wing in Mr. Say's species. This species, which I name the Two-banded Stem-eye (*Sphyracephala sub-bifasciata*), was swept from grass at the base of the bluffs of the Illinois river, north of the city of Ottawa, the middle of last October. The Short-horned Stem-eye I first captured in Saratoga county, upon a cold windy day the latter part of May, between the leaves of the Skunk's cabbage (*Symplocarpus fetidus*), where it had, probably, retired for shelter — this being the same situation in which it was originally discovered by Mr. Say. Near my present residence, upon sunny days in the middle of April several were found associated with other flies and small bees, drinking the sweet sap of a newly cut maple, beside a stream of water at the base of a hill. It was more tame and less inclined to take wing when approached than any of the other flies. It seems limited to low shady situations, for other stumps upon the side and summit of the same hill, equally frequented by other flies, had none of this species. Near the same spot I once captured a specimen the last of October, resting upon a sand bank and basking in the sun. I state these facts thus particularly as so little is known respecting the habits of this tribe of insects.

The Two-banded Stem-eye measures 0.15 to the tip of its abdomen. It is black and polished, the thorax brownish, the head and antennae tawny yellow, and above on the middle of the head is a black spot. The legs also are tawny yellow, and the anterior thighs have a brown cloud-like spot upon each side, the anterior shanks being black. The middle legs have a brown band above, and another below the knee. The hind thighs and shanks each have a brown band at tip. The wings are hyaline, with two dusky bands, the inner one short, as already described.

Prominent among these insects which subsist upon and destroy plant-lice are the Aphis-lions as they have been termed. These are larvae of the Golden-eyed and Lace-winged flies, insects which form the Family HEMEROBIIDÆ in the Order NEUROPTERA. In their perfect state they are delicate slender-bodied insects, most of them less than half an inch long, with four large wings beautifully reticulated with veins, resembling the finest gauze or lace work, whence they have received the name of Lace-wings, and with prominent globular eyes, which in many of the species have a
brilliant golden appearance, which has obtained for them the name of Golden-eyes. These last are mostly of a bright pale green color, and several of these, although they have such a pretty appearance, emit a peculiar and very disagreeable odor, which remains upon the fingers for some time after one of them has been handled. This odor appears to be given out constantly by those species which possess it, and not merely when they are disturbed, as is frequently stated; for in numerous instances I have by it been aware of my nearness to one of these insects before I had seen it.

These flies may be met with daily during the summer season, generally in the vicinity of trees or other herbage infested with plant-lice. Their eggs are placed in a very curious manner. This work is done in the night time, so that no one has been able to inspect one of these insects when engaged in this operation, they being so timid as to flit away when approached with a light. Still, the mode in which the fly proceeds in this work is sufficiently evident. Nature has furnished these insects with a fluid analogous to that which spiders are provided for spinning their webs, which possesses the remarkable property of hardening immediately on being exposed to the air. When ready to drop an egg, the female touches the end of her body to the surface of the leaf, and then elevating her body, draws out a slender cobweb-like thread, half an inch long, or less, and places a little oval egg at its summit. Thus a small round spot resembling mildew is formed upon the surface of the leaf, from the middle of which arises a very slender glossy white thread, which is sometimes split at its base, thus giving it a more secure attachment than it would have if single. The egg, at its summit, is of a pale green color, when newly deposited, but before it hatches it becomes whitish, and shows two or three faint dusky transverse bands. The larva leaves it, commonly I think in less than a week from the time it is deposited, through an opening which it gnaws in the summit, and the empty shell remains supported on its stalk, somewhat shrivelled and of a white color. And where several of these are placed together in a group, they bear a close resemblance to the fruit-bearing organs of those mosses whose capsules are elevated upon capillary
pedicels, insomuch that botanists have in some instances actually mistaken them for vegetable productions of this kink.

Authors state that these eggs are deposited on leaves in clusters of ten or a dozen. I have a small willow leaf, upon the mid-vein of which, in a distance of one inch, twenty-three of these eggs are implanted, with seven more in a row close by the side of these, and five more in a second row, making thirty-five eggs in all, which undoubtedly was the stock deposited by a single individual in one night. But however it may be with the European Lace-wings, certain it is that most of our American species of these insects do not place their eggs in clusters, but singly, one or two upon the edges or surface of the leaf. On a young apple tree in my yard, about eight feet high, I found these eggs the first of July, scattered over all the leaves. This tree had ten limbs, each about three feet long, and inserted upon the leaves of one of these limbs and its twigs I counted sixty-four eggs, and some probably escaped my notice. There was thus at least six hundred eggs upon that one small tree, all seeming to have been newly laid. And upon looking about, I discovered these eggs upon every other fruit and forest tree in my yards, and also upon the fillets of cloth by which newly set trees were tied to stakes for support, and two were even found attached to the iron trimmings of the latch to my office door. Being thus profusely scattered, it will readily be conceived what an amount of benefit these insects render us.

Having enjoyed favorable opportunities for inspecting the habits of this family of insects, and having noticed several points in their economy different from the observations which have heretofore been recorded, I give their history somewhat in detail, believing I shall thus render a more valuable contribution to the stores of human knowledge, than by occupying the same space with brief and superficial notices of a number of dissimilar insects.

From the accounts usually given in books it would be inferred that plant-lice were the exclusive food of the larvae of this family of insects. It however is recorded that when in confinement and pressed with hunger, they will devour each other, and Mr. Curtis
relates (Journal Royal Agricultural Society, iii. 62) that having enclosed two of them in a box with a caterpillar three-fourths of an inch long, one overcome and devoured the other, and then sucked the juices out of the caterpillar, leaving only the skins of his victims remaining. In the same connection, he says these larvæ "begin to feed upon the Aphides as soon as they escape from the egg." Such being the current account of the larvæ, I was surprised at meeting with their eggs in abundance upon trees which were wholly free from Aphides, and which had none of these insects established anywhere in their vicinity. The small apple tree which was stocked with so many hundred eggs had no lice or other insects upon it or near by it, that I could discover. And still more was I surprised on hatching some of these larvæ from their eggs, and putting both old and newly born plant lice into the vials with them, to find that they died of starvation, utterly refusing to touch the lice or to devour each other. In one instance a hungry young aphis lion was noticed to cautiously approach a louse which was standing still, and grasp one of her feet between his jaws. The louse instantly pulled her foot away, whereupon the Aphis-lion drew back in evident fear, as though expecting the aphis would pounce upon and destroy him. Had it been a spider he could not have showed more alarm. Repeated experiments produced the same results—the infant larvæ dying of starvation with young and tender plant lice wandering around them. At length, the middle of July, I found upon a leaf a cluster of insect's eggs of a brick red color, and a half-grown aphis-lion standing with his jaws sunk into one of them, sucking out its contents, three eggs in the group having been already exhausted, nothing remaining of them but the empty clear and glass-like shells. Every observer knows it is not rare on meeting with a cluster of the eggs of insects to find some of them which are mere empty transparent shells, but I believe it has never been noticed before that it is young aphis-lions which thus destroy these eggs.

The leaf above alluded to was secured with its contents and placed in a vial. Only two or three more of the eggs were sucked, when they became too old for the use of the aphis-lion, and he remained without food for a time. Six days after they were
found, small inch-worms (Geometridae), about 0.15 long were hatched from them. The aphis-lion was at this time reposing at the top of the vial when one of these worms approached him. It was instantly seized, and the contents of its skin were sucked out with avidity, and he now commenced searching for another worm, probing every crevice in the cork stopper with his long jaws, and then walking down the vial, examining from side to side as he went along, until he came to the leaf at its bottom, now curled and shrivelled. He first crawled through every fold of this and then wandered over its surface, till coming to another worm, it was instantly seized. Thus sixteen of these newly-born inch-worms were consumed as fast as he could find them. They were seized indifferently by whatever part of their bodies was first accessible, and he was occupied four or five minutes in sucking out the fluids of each worm. As the skin became empty it was folded together, and rolled about between the tips of his jaws in a little wad, until the last particle of juice which it contained was exhausted. The skin was then adroitly wiped off from the tips of his jaws, and he started off in search of another worm, always carrying his head down close to the surface on which he was walking. Sometimes on coming to a skin which had already been sucked, it was taken up and rolled between the tips of his jaws again, as if to ascertain whether he had done his work well. When occupied in sucking a worm he stood still, adhering more by means of his tail than his feet, and there was a pulsating motion to his body indicating the satisfaction he felt in the act in which he was engaged. If another worm approached so near as to touch him at this time, he gave a sudden spiteful shrug, whereby it was frightened away. Only three worms remained when I introduced into the vial a cocoon of spider's eggs, with some of the young spiders hatched and crawling about the cocoon. These were immediately discovered by the aphis-lion, and leaving the worms he commenced devouring these small spiders in the same manner, each spider occupying him about half the length of time one of the worms did. The fine cobweb of the spiders appeared to adhere closely to his jaws, and to wipe this off, after finishing one spider, and before seeking another, he thrust his jaws repeatedly into the cocoon. Thus quite a number of the spiders were
destroyed, when, having fully glutted his appetite, he retired into a corner of the vial to repose. This larva pertained to the species hereinafter described under the name of the New-York golden-eye.

It is thus evident that many of the species of this family of insects, contrary to what has been heretofore published, when first hatched are too feeble and timorous to attack plant-lice or any other living prey, and subsist during the first stages of their lives upon the eggs of insects. By destroying these eggs they are often as beneficial to us, probably, as they would be if aphides were their sole food. The aphis-lion, however, is perfectly indiscriminate in his appetite, consuming the eggs of beneficial as well as injurious insects, and we now learn why it is that the parent of these insects places her eggs upon thread-like pedicels, whereby they are elevated from the surface of the leaves. Hitherto it has been unknown why this insect deposits her eggs in this singular manner. By a reference to that mine of information upon all subjects of this kind, Westwood's Introduction, (vol. ii. p. 47,) we find it merely stated that these eggs have been supposed to be placed in this manner to protect them from the attacks of parasites. But we see not why a parasitic insect may not alight upon and puncture and drop its eggs within these eggs almost as readily as it could do if they were placed upon the surface of the leaf. Certainly many of these parasitic insects display far more sagacity than this would be in discovering the appropriate receptacle for their eggs. But speculation upon this subject is no longer necessary when we have facts to guide us to a conclusion. In a recent communication to the Country Gentleman, which is not yet published, (No. 5 of my series of entomological articles in that periodical,) I suggested that these eggs are elevated upon pedicels to prevent their being found by the young larvae of their own kind, which probably would instantly devour them if they were laid upon the surface of the leaves. To ascertain more fully the correctness of this opinion, I sought an egg which was upon the point of hatching, and placed it in a vial; the next day a young aphis lion was found disclosed from this egg. Two freshly laid eggs were now obtained; one of these was placed in the vial elevated
upon its pedicel, the other was laid upon the surface of a leaf in the vial. Next morning the latter was found flattened, and with only a small portion of fluid remaining in one end, and the plump size and green tinge of the young larva showed plainly that he had appropriated the missing contents of this egg to himself, and in a short time he approached the egg and inserting his jaws into it wholly exhausted it of its remaining contents under my eye. We thus see that the young aphis-lion will devour the eggs of its own species if they are placed within its reach. Is it not wonderful that the female knows this fact when no other insect possesses this knowledge? It would seem as though she had a recollection of what her own habits were in the larva period of her life, else why does not instinct inform other insects of this same fact, and excite them to similar artifices for placing their eggs beyond the reach of these destroyers?

A cocoon of spider's eggs was now introduced into the vial last spoken of, upon which the aphis-lion therein became plump and well fed. Three days after this, the other egg elevated upon its pedicel, having been wholly undisturbed, hatched, and the infant larva from its approaching the older one, which was full three times its size, the latter to my astonishment, passively and without manifesting the slightest resentment, permitted the newly-born infant to pierce him repeatedly with its jaws until life was extinct. His carcase was then shoved off from the leaf, and abandoned, little if any of the juices being sucked from it. I can only account for this strange phenomenon—the young and weak destroying the strong—by supposing there had been some poisonous quality in the spider's eggs on which the older aphis-lion had fed, which had rendered him diseased and weary of life, for he even seemed to solicit his pigmy kinsman to slay him. Our American species, however, appear to be less inclined to cannibalism than those of Europe, this being the only instance in which I have known one to destroy another, and for several days I have had a Chrysopa and a much larger Hemerobius larva enclosed together and left at times without food, yet they have manifested no inclination to molest each other.
Later in the season I have known young plant-lice to be destroyed by newly born aphis-lions. And although the fact is indisputable that plant-lice are the chief food of this family of insects during their larva state, they are by no means so limited in this respect as is represented in the accounts heretofore published. They appear to seize and devour worms of different kinds with the same avidity that they do the plant-lice. I have more than once seen them devour the maggots of the Syrphus-flies which were feeding upon the plant-lice on the same leaves with them. And a few days ago I placed in a box with a newly captured aphis-lion an imbricated gall which is formed by a species of midge (Cecidomyia) at the summit of the stalks of the golden-rod, having first torn off the outer valve-like leaves of this gall until I came to one of the larvæ residing in it. The aphis-lion immediately began to examine this gall, and coming to the maggot, instantly grabbed it, sucking out the contents of its skin with an evident relish. With his long jaws he then commenced probing the fissures between the remaining valves of the gall and soon found another worm so deep between the valves that he could only reach and pierce it with one of his jaws, and thus he remained stationary until he had sucked the fluids of this worm, the point of the unemployed jaw being pressed against the outer surface of the gall during this operation. His proceedings at this time plainly showed the purpose, I think, for which Nature has furnished these larvæ with such remarkably long slender sickle-shaped jaws, namely, to probe narrow crevices and small holes and fissures—the situation in which a portion of their prey lurks. The dexterity with which he insinuated sometimes one, at other times both of these instruments between the valves of the gall, showed he was no tyro in operations of this kind. He even crowded the valves somewhat apart, at times, to reach further in between them. Whether these larvæ are able to separate the chaff surrounding a kernel of wheat sufficiently to insert their jaws therein to destroy the larvæ of the wheat-midge (C. Tritici), I have not ascertained, though I should judge them capable of doing this. If so, it may be possible to turn the labors of the aphis-lion to a most valuable account in restraining the ravages of this insect which is making such appalling havoc in our wheat
crops of late years. A number of the small yellow grubs sufficient to destroy every kernel in a head of wheat would no more than suffice an aphis-lion for a single meal. And if these voracious creatures are usually so common as I have found them to be the present season, it would be an easy matter for a person who is familiar with them to gather such a number of the eggs and larvae as, scattered through a wheat-field infested by the midge, would greatly diminish the damage done by this insect.

The larvae of different species of these insects differ considerably in their colors. They are mostly of a reddish-brown color, with a darker stripe in the middle, and a cream-colored along each side. They have bodies of a long narrow weasel-like form, wrinkled transversely, with six rather long legs anteriorly. But they may be distinguished from all our other insects and larvae by their two long slender jaws, curved like sickles, which project horizontally forwards from their heads. Along each side is a row of projecting points, one to each segment, from the ends of which several fine bristles radiate in all directions. Others have the whole of their backs covered with rows of similar elevated points and radiating bristles, giving them a truly frightful appearance. But these have the artifice to conceal themselves from view, by placing the empty skins of their victims between their radiating bristles, so that they adhere, and completely hide the insect from view. It is the skins of the woolly plant-lice which they mostly employ for this purpose. Thus covered they resemble a little mass of white down adhering to the bark of the apple tree, and at a short distance one of these insects thus covered can scarcely be distinguished from a colony of the Apple-tree blight, which is usually covered with a mass of down of similar size and appearance. Thus disguised they are able to approach their victims without exciting their alarm and putting them to flight. It is in autumn that the species which thus cover themselves appear upon the apple trees. I have noticed none but the naked kinds without bristly backs in July and August.

The larvae cast their skins soon after birth and often before they have taken any nourishment. No other moulting occurs, that I have observed, until they change to pupae. When newly born, the larva of the New-York Golden-eye is 0.05 long, soft and tender, long and narrow, with the opposite sides of the head and thorax straight and parallel, the abdomen tapering. It is white, with
two dusky stripes upon the head, and the outer side of its long sickle-shaped jaws is blackish. Its back is at this time clothed with numerous long fine hairs. It walks about with an easy, sedate step, making very good progress, and could readily crawl down a tall tree and probably travel some distance therefrom before it has taken any nourishment. When full grown it is about 0.30 long, broadest in the middle, and tapering thence to both ends, but more posteriorly; its color is reddish brown, paler in the middle of the back, with a narrower darker stripe the whole length of its body. It presents numerous transverse impressed lines above, those at the sutures being more conspicuous. The sides of each segment are cream-yellow and protuberant, forming elevated points, with short diverging white hairs at the apex. Under side pale. Head pale with two blackish stripes which taper and diverge from each other anteriorly. The antennae are about as long as the jaws, slender and tapering, without any apparent joints. The jaws are tinged with dusky. The legs are pale and somewhat translucent, with a dusky band above and another below the knees; the feet are also dusky. The twelfth and thirteenth, or the two last segments are quite narrow and destitute of tubercles tipped with radiating hairs on each side, but have two black stripes on their upper side. They form a kind of tail turning in every direction, and by the tip of the last segment the insect adheres, particularly to smooth surfaces like glass, much more securely than it can do with its feet. This adhesion appears to be effected by a power of suction in this part.

The larvae of the other species of Chrysopa appears to be similar to the one which has now been described. One of them, however, has fallen under my notice, having the whole surface above mottled with light yellow and brownish red, with a slender black line on the middle of the back, having a reddish spot upon it in the centre of each segment, and the head with two black spots on its base and a black stripe anteriorly upon the middle. The species which is produced from this I have not yet ascertained.

Having attained its growth, the aphis-lion for its final meal gluts itself as full as its skin can hold. For two days afterwards it remains torpid and inactive, as though sick of a surfeit. It then commences spinning its cocoon. This operation is performed by its tail, which is supplied with a glutinous fluid similar to that from which the spider spins its web, which adheres to whatever point it is applied, and hardens immediately upon exposure to the air. The amount of life and motion which the tail possesses at this time, when all the rest of the body is lying still and unemploy-ed, is truly astonishing. Like the head of a leech, it contracts, elongates and turns from side to side and up and down with the vivacity of the hand of a musician beating upon a tambourine, attaching its thread here and there as it darts around from point to point. By the New-York Golden-eye scattering threads are first fixed around the hollow in the bark, or elsewhere
where it lies, and to these the skins of any dead plant-lice or particles of dirt which may be within reach are affixed, to serve as more convenient points of attachment for the threads which are afterwards spun than what the naked threads would be. Inside of these the insect lies, with its tail playing around backwards and forth. At first the skin is so distended and the body so stiff that it can only bend inwards in the form of a semicircle or of a horse-shoe, and the head is thus brought opposite the tail, giving the insect a ludicrous aspect as it lies still, with its eyes gazing fixedly at the tail as if in astonishment at seeing it fly around in such a singular manner. The tail at this time reaches around to every part of the half of a sphere, and when one side has become sufficiently filled with threads, the body moves along to give it access to another side, the insect thus lying at one time upon its side or its back, and at another time standing as it were upon its head. Occasionally, as if tired with its cramped position it straightens out somewhat, thus putting the threads upon the stretch and moulding the sides of the cavity in which it lies into a smooth and even surface. As so much matter is given out from its body to form the threads of the cocoon, the skin ceases to be distended as it was at first, the body shrinks and becomes more flexile, and as the cavity in which it lies becomes more and more contracted in size by the threads which the tail is constantly adding on every side, the insect is drawn together into a smaller space and becomes coiled into the form of a ball, the head being pressed down upon the breast, with the tail directly over it briskly continuing its work in the small vacant space which here remains. The feet are now so cramped that they are incapable of turning the body around as at first, and it now only moves along slightly by a vermicular motion often repeated. The threads have now become so numerous and close that finally no open spaces are left between them; and thus a small ball of paper-like texture is formed in the centre of the cocoon, within which the insect is entirely hid from view, tightly bandaged like the feet of a Chinese lady and compressed to a quarter of its previous size. This is a most remarkable circumstance in the history of these insects— that the larvae contract and compress themselves into cocoons of scarcely one-fourth their size, and from these cocoons come flies
which are double the size of the larvae. It is like a full-grown hen hatching from an ordinary-sized egg.

It requires five or six hours for the New-York Golden-eye to spin so much of its cocoon as to hide itself from view. The threads of which it is composed are of a white color, and the little paper-like ball in its centre is scarcely the tenth of an inch in diameter. Within this the insect changes to a pupa of a pale green color, with large hemispherical eyes, and with each of the legs, the wings and the antennæ enclosed in separate sheaths. The antennæ-sheaths show the bead-like joints of these organs very distinctly. They stand out in strong relief upon the surface, passing above the eyes and along the sides of the thorax, and on the outer surface of the wing-sheaths near their anterior margin to their tips, where the remainder of their length is coiled and doubled together in a singular and curious manner.

These insects lie through the winter enclosed in their cocoons. Some of the species, however, have two generations annually, and these remain in their pupa state in the summer season about a fortnight. M. Andouin informed Mr. Westwood that they escape from their cocoons by means of a slit made in a spiral direction at one end. But this certainly is not their usual manner of opening their cocoons. One side of the cocoon where it is globular, and one end where it is oval, is cut smoothly off, so as to form a little lid, which commonly hangs to the cocoon by some of the loose exterior threads, which serve as a hinge to retain it in its place. Through the opening thus made the pupa crawls out of its cocoon before it casts its skin to become a perfect fly.

Of this family of insects, which are rendering us such important services, our American species are somewhat numerous. Only two of these, I believe, have as yet been named and described. I therefore present herewith descriptions of most of the species which are known to me. These pertain to two genera, *Hemerobius* or the Lace-winged flies, having the joints of the antennæ globular, and *Chrysopa* or the Golden-eyed flies, in which they are short cylindrical. To these genera it is necessary to add a third, resembling *Chrysopa* in most of its details, but instead of having

[Assembly, No. 215.]
the antennæ inserted close together, they are separated at their bases, and a cylindrical protuberance or horn projects from the front between them. For this genus I propose the name *Meloma*, formed from two Greek words, implying bad smell, in allusion to the odor which in common with several species of *Chrysopa*, these insects exhale. But one species is known to me, which may be named and described as follows:

Signoret's Golden-eyed Fly, (*Meloma Signoretti*) is of a pale yellowish green color, and is clothed with a fine short pubescence, especially upon the abdomen. The cylindrical horn which arises between the base of the antennæ is longer than broad, and is directed forward upon a line with the head and thorax. It is a third longer and somewhat thicker than the enlarged basal joints of the antennæ, is slightly dilated at its anterior end, where it is abruptly turned downwards almost at a right angle, this deflected part forming a thin transverse lamina of a light yellow color, vertically striated on its anterior face, and with a projecting acute tooth in the middle of its lower margin, which is of a brown color and turned backwards. Upon the top of the head is a transverse elevation, with a deep excavation immediately back of it. The face has a round smooth elevated brown spot upon each side of its centre. The antennæ are very pale brownish, the two basal joints light green. The basal edge of the anterior segment of the thorax is elevated, and there is a more prominent obtuse elevation forward of this, separated from the base by an intervening transverse groove. The basal elevation shows a longitudinal impressed line on its middle, and back of this a more strongly impressed line extends across the middle of the anterior elevated lobe of the second segment. The legs are whitish, the feet tinged with dull yellow, with black hooks at their tips. The wings are slightly angulated at their tips, the hind pair more conspicuously so. They are hyaline and glass-like, with a slight opacity at the stigmas or that part of the wing which is forward of the extremity of the outer margin. Their veins and veinlets are whitish except the two subapical series of veinlets of the anterior pair, and those which are given off along the inner side of the rib-vein, which are brownish black. This species measures 1.15 across the wings when spread. It was captured the latter part of July, near the summit of Mount Antonio, one of the outliers of the Green Mountain range, slightly beyond the boundary of our State, in Rupert, Vermont. I name it in honor of my valued friend, Dr. Signoret, of Paris, whose elegant Iconograph of the *Tettigoniides* now publishing in the Annals of the Entomological Society as well as his previous productions, are an enduring monument of the extent and accuracy of his researches in that branch of the science to which he devotes himself.

The species of the genus *Chrysopa* are all of a bright pale green or yellowish color; the number and situation of the veins and veinlets or short connecting veins in their wings, is the same, and they differ but little in size. To the naked eye they seem to form but a single species. I had long noticed that individuals of
this genus presented black dots and other marks upon the head and thorax, but they were in all other respects so much like others destitute of these spots, that I was in doubt whether they were anything more than mere varieties of two species, the *Perla* and *chrysops* of the old authors, or the American representatives of those species, the one having the veinlets pale green, the other having them varied more or less with black. Awaiting for some fact that would throw light upon this subject, I several years ago met with ten chrysalids upon the leaves of a yellow pine, attached near each other, and all obviously the progeny of one parent. It occurred to me that when these disclosed the perfect insect they would furnish evidence whether the same species presented those slight differences in its markings which I had noticed among different individuals of this genus. I accordingly gathered them, and in a short time obtained from them the mature flies. These were all alike in every respect, and were destitute of any dots or other marks except a tawny yellow spot upon the cheeks. I therefore regarded this mark upon the cheeks as forming the distinctive character of a species. All the specimens which were obtained in the manner stated, had the veinlets of their wings pale green; other individuals, however, occurred, having the same tawny yellow spot upon the cheeks, but in which the ends of the veinlets were dark green or black. These I had been inclined to regard as only varieties of the species, until the present season I discover that these individuals which have the ends of their veinlets black or dark green come from cocoons which are globular, white, with a rough ragged surface from numerous loose fibers of silk adhering to them, whilst those which were gathered upon pine leaves were oval, pale green and smooth. From the cocoons, therefore, it is evident that they are of different species. It is thus shown that a variation in the color of the veinlets of the wings, as well as in the dots and other marks upon the head and body in this genus, is to be regarded as indicating a difference in the species. The general reader is commonly inclined to the opinion that naturalists make their favorite science unduly complicated and obscure by founding multitudes of species upon what appear to be slight and unessential distinctions. But the facts here stated will show him some of the
evidences which compel us to regard these minute and seemingly unimportant marks as valid indications of differences which actually exist in nature.

To facilitate the discrimination of these species of this genus which are here described, they are arranged in an analytical series, which, on a slight inspection, will be intelligible to every reader.

1. (18.) Sockets in which the antennæ are inserted margined more or less with black.

2. (5.) Two black or dusky stripes upon the top of the head.

3. (4.) Veinlets mostly black, a few with a short green band on their middle.

The White-horned Golden-eye (Chrysopa albicoris). Antennæ whitish, basal joint with an orange-red ring surrounding it wholly or in part, second joint with a black ring; sockets at their base with an uninterrupted black margin. Head above with two parallel black stripes confluent anteriorly with the black margins of the antennæ sockets; face with an orange-red spot each side upon the cheeks and a black crescent under each eye, its anterior horn running into the black margin of the antennæ sockets. First segment of the thorax with an impressed line in its middle, and three brown spots on each side, behind which are two black dots and a fourth brown spot situated upon the basal edge; second segment with two short black lines upon its anterior and two brown spots near its posterior edge. Veinlets black, those in the disk green in their middle, those ending on the inner and apical margins green except at their bases, those of the hind wings green except the row towards the tips, those outside of the rib-vein and the bases of those branching from the inner side of the rib-vein. Wings expanded 1.15. My specimens of this species were captured in the State of Mississippi, in April.

4. (3.) Veinlets green, slightly marked with black at their bases.

The Disagreeable Golden-eye (C. illepidia). Pale yellowish green clothed with short white hairs. Head yellowish white, pale yellow above with two black stripes which are often dusky in their middle and slightly converge anteriorly, their anterior ends confluent with the black margins of the antennæ sockets; a black dot on the base behind each eye. Antennæ pale yellow, becoming dark brown towards their tips; basal joint white with a pale tawny spot on the upper side; second joint with a black ring; sockets broadly margined with black except above between the anterior ends of the longitudinal stripes where is an interruption of bright tawny red. Eyes dark golden green. A black crescent under each eye, the anterior horn of which joins the black margin of the antennæ sockets in the middle of their under sides, and
from that point a black stroke is sent downwards upon the cheeks, which stroke is margined on its anterior side with tawny red. Palpi black with white rings. A small oval black spot upon each side of the throat. Thorax with a dusky or black mark each side at its apex and four spots above at the angles of an imaginary square, and behind these a faint yellowish brown spot each side of the middle. Feet pale dull yellowish. Wings pellucid, their tips angular, those of the upper pair very slightly so; an opake pale greenish yellow stigma; veins pale green; veinlets branching from the rib vein on both sides black at their bases; two series of veinlets towards the tip of the wings black, some of them sometimes pale green. Lower wings, veinlets on the outside of the rib-vein and bases of those opposite to them black. Wings expand 1.10. Found the last of June in this State and also in Illinois. When captured it emits the disagreeable odor peculiar to several of its kindred species.

5. (2.) Head above with black dots but no stripes. A tawny yellow spot on each cheek, commonly with a black line or dot on its posterior edge.

6. (17.) More than two dots upon the top of the head.

7. (12.) Dots six in number, four at the angles of an imaginary square, the anterior two often confluent with the black margin of the antennae sockets, and one each side behind the eye.

8. (11.) A black dot or streak on the posterior edge of the tawny spot on the cheeks.

9. (10.) Ends of the veinlets black.

The O-marked Golden-eye (C. Omikron). This is of a pale green color with a light yellow head and a black O mark surrounding the base of each antenna, broader on the upper side, and above interrupted with orange red between the two anterior dots on the top of the head, which are commonly confluent more or less with these black rings. This species corresponds with the one last described in all its details, except that in addition to wanting the black stripes on the head, the veinlets branching from the rib-vein on both sides are black at their tips as well as their bases, and the remaining transverse veinlets are mostly black at their bases; and instead of a line in the tawny spot upon the cheeks this commonly has only a black dot. A variety occurs in which the tawny reddish spot on the upper side of the basal joint of the antennae is wanting. The wings expand from 0.95 to 1.10, the females being slightly larger than the other sex. It is a common species during the month of June, and exhales the same disagreeable odor as the preceding.

10. (9.) Ends only of the veinlets on the outer side of the rib vein and bases of those given off from its inner side black, all the others green.

The Yellow-headed Golden-eye (C. xanthoce, hala) is distinguished from the foregoing by having the veins and veinlets all green, except those veinlets
which are given off from the rib vein, which are black at their bases, and those on the outer side at their tips also. It is of a pale yellowish green color with a light yellow head, the orange red spot on the cheeks with a black streak towards its hind edge, and the two anterior dots on the top of the head confluent with the black margins of the sockets of the antennae, which, between these spots, is interrupted with tawny yellow. Its wings, expanded, measure 1.10. It is much less common than the preceding species, and occurs with it in the month of June. Specimens have also been sent me from Michigan by T. E. Wetmore, Esq.

11. (8.) The tawny spot on the cheeks without any black dot or mark.

The Yellow-cheeked Golden-eye (C. fulvibucca) corresponds with the O-marked golden-eye in the color of its veinlets, and the spots and marks upon its head, except that no black dot or streak occurs in the tawny spot upon its cheeks. Like that species also, this has an impressed line the whole length of the first segment of the thorax, but here that line is crossed slightly back of its middle by a straight transverse one, the ends of which on each side are deep black, and a pale umber brown spot extends from this backwards, nearly to the base of this segment, having an oval black dot outside of it. Forward of the brown spot is a smaller one of the same color, and on the anterior margin on each side behind the eye, as in several of the species, are too short blackish lines converging and confluent at their hind ends. The second segment has also an impressed medial line, and two brown spots upon each side. A variety occurs in which these spots last mentioned are wanting. The wings expand 1.10. This species occurs the last of July and in August.

12. (7.) Four dots only upon the top of the head, situated in a transverse row.

13. (14.) A black crescent-shaped mark under each eye:

The Mississippi Golden-eye (C. Mississippiensis.) The dead specimen sulphur yellow. Antennae white, dull yellowish towards the tips, their sockets margined with black with a tawny yellow interruption above in the middle. Head with two black dots above, and one behind each eye. A black crescent under each eye, its anterior horn uniting with the black margin of the antennae sockets, from which point a black dash is sent downwards upon the cheek, which is edged with pale tawny yellow. Thorax with spots on the first and dots on the second segment analogous to those in the following species. Legs pale green, feet pale dull yellow. Wings rounded at tips; veinlets mostly black, their middle pale green, those towards each end of the outer cell and the two veins towards the tip entirely black. Wings expand 1.20. Taken in the vicinity of Jackson, Mississippi, by my daughter, in the month of April.

14. (13.) A black dot under each eye. Tips of the wings rounded.
15. (16.) Sockets of the antennae broadly margined with black except upon their outer sides.

The X-marked Golden-eye (C. Chi). Antennae whitish, towards the apex black, their sockets widely edged on their inner sides with black, forming a mark resembling the Greek letter chi, or an italic χ. A large black dot under each eye and another forward of it, with a black point in the centre of the face. Four large black dots in a transverse row upon the top of the head. First segment of the thorax with four large brownish black spots at the angles of an imaginary square; second segment with four black dots also forming the angles of an imaginary square, and a minute one above the base of each fore wing. Abdomen black, except at its tip. Veins black at their ends; veinlets black, the middle ones on the outer side of the rib-vein with a green band on their middle; veinlets of the hind wings which branch from the rib-vein, black; those on its inner side with a green band on their middle, those branching inwards from the wavy longitudinal vein slightly black at their bases. Wings expand 1.25. Taken the last of June upon bushes in swamps.

16. (15.) A black Y-shaped mark between and dot below the bases of the antennae.

The Y-marked Golden-eye (C. Upsilon). Light yellowish green. Antennae dull whitish, dusky towards their tips; basal joint pale green, blackish at its apex on the under side. A black dot under each eye and a somewhat square spot forward of it towards the mouth. Mouth tinged with dirty whitish. Palpi with black rings. Four black dots in a transverse row upon the top of the head; the two inner ones larger. Thorax with four equidistant black spots upon each side in a row, the hind ones on the anterior edge of the second segment; back of these four black dots at the angles of an imaginary square, and another above the base of each fore wing. Abdomen obscure greenish above with two faint brownish dots near the middle of each segment. Wings pellucid, veins pale green, veinlets black, mostly with a pale green band on their middle, their hairs and those of the veins black; hind wings with the veinlets towards the tip, those in the outer cell and bases of those in the next cell black. Wings expand 0.90 in the male, and 1.10 in the female. This is one of the earliest appearing species, coming out the last of May and early in June.

17. (6.) Two black dots only upon the top of the head.

The Two-dotted Golden-eye (C. bipunctata). Pale yellowish green. Head pale yellow, with a black dot on each side of its base above, almost in contact with the eye. Antennae whitish, dark brown towards their tips; basal joint white, with a tawny red band on its upper side; second joint black; their sockets margined with tawny red on the upper and with black on the under side. Eyes brilliant coppery red when alive. Face with a tawny red spot on each side, having an oval black dot in its hind margin. A black stripe under each eye sending a slender line from its lower end forwards to the margin of the antennae sockets. Palpi white with black tips and rings. Thorax without spots. Wings rounded at tips; veinlets green, some of those arising from the rib vein slightly marked with black at their bases, those in the outer cell of
the hind wings black. Wings expand 1.05. Taken the fore part of June.

18. (1.) Sockets of the antennae not marked with black.
19. (38.) A dot or spot upon the cheeks.
20. (29.) Cheeks with a black streak or dots under each eye.
21. (22.) Two black dots under each eye.

The Colon Golden-eye (C. colon). Light yellow. Antennae pale tawny yellow, black towards their bases; basal joint light yellow, unspotted. Face with two black dots each side upon the cheeks. Thorax with a black dot on each side at the apex, and in the middle a transverse but no longitudinal impressed line. Wings slightly angulated at their tips; the two rows of subapical veinlets, those branching outwards from the rib vein and bases of those branching inwards black. Wings expand 1.40. Taken the fore part of June.

22. (21.) A black streak or short line under each eye.
23. (26.) The black line not margined with tawny yellow.
24. (25.) Several of the veinlets black at one or both ends.

The Clean Golden-eye (C. emuncta). Light yellow. Head without dots or marks except a short black stroke under each eye, anteriorly joining the narrowed end of a second black stroke. Thorax without spots, save a black point at the apex on each side. Wings rounded at tips, hind pair slightly angulated; veinlets on the outer side of the rib vein black at their bases only in part, all those upon the inner side black at base and tip. Palpi black on their outer sides. Wings expand 1.30. Taken the middle of August.

25. (24.) Veinlets all green.

Robertson's Golden-eye (C. Robertsonii). Pale green with a whitish stripe from the head along the middle of the back. Head sulphur yellow, without spots except a short shining black stripe under each eye. Antennae pale dull yellow, basal joint white. Thorax without spots. Legs whitish, feet tinged with brown. Wings rounded at their tips; stigma green, slightly opaque; veins and veinlets all pale green. Wings expand 1.05. Captured at Tullehasie, in the Creek Indian Territory, west of Arkansas, the middle of May, and sent me by William S. Robertson.

26. (23.) Cheeks with a tawny yellow spot in which or on its hind edge is a black line or dot.

27. (28.) Color pale green.

The Weeping Golden-eye (C. plecrabunda). Very pale green, with a paler cream yellow stripe from the head the whole length along the middle of the back. Head cream yellow; cheeks pale tawny yellow, with a small black stripe posteriorly under each eye. Antennae whitish, clay yellow towards their tips. Thorax without spots. Beneath and legs greenish white, feet pale clay
yellow. Wings rounded at tips, the hind pair slightly angular; veins and veinlets pale greenish. A variety, which is common, has a brown or reddish spot above upon each side of the head, contiguous to the eye, in which an ocellus or small simple eye appears to be situated. Wings expand one inch. This is an abundant species the last of September and in October, both in this State and in Illinois, occurring upon the foliage of apple and peach trees, and also upon various wild bushes and weeds.

28. (27.) Color straw yellow.

The Counterfeit Golden-eye (C. pseudographa). Very like the preceding species, but of a straw yellow color without any tint of green, the head brighter cream yellow, the cheeks tawny yellow with a short black stripe running downwards from the under side of the eye, the antennæ, legs and feet, and veinlets and veinlets of the wings pallid white, the wings rounded at their tips, the abdomen with a smooth more clear white stripe along the middle of the back, upon each side of which at the apex of each segment is a pale tawny yellow spot. A variety has a band of this last color upon the apex of each segment of the abdomen. Though so closely related to the weeping golden-eye, and associated with it, it is evidently a distinct species and is easily discriminated. The wings expand one inch. Several specimens were captured upon apple trees in northern Illinois the fore part of October.

29. (20.) No black dot or mark under the eye. Cheeks tawny yellow between the eye and the mouth.

30. (35.) Ends of some or all of the veinlets black or dark green.

31. (32.) Color sulphur yellow, with orange yellow spots each side of the abdomen at base.

The Sulphur Golden-eye (C. sulphurea). Bright sulphur yellow, with an orange colored spot under each eye, one on each side of the apex of the thorax and of the basal segments of the abdomen. Antennæ, legs and feet whitish. Wings rounded at tips, the hind pair slightly angular, veinlets white, the rows of veinlets towards the tips of both pairs of wings and the ends of most of the other veinlets black. Wings expand 1.05. Taken in New-Jersey the latter part of September.

32. (31.) Color pale green, with a pale yellow stripe on the back.

33. (34.) A row of orange-colored spots above on each side of the thorax and abdomen.

Sichelli's Golden-eye (C. Sichelli). Pale yellowish green with a pale bright yellow stripe along the middle of the thorax and abdomen. Head white with a large pale yellow spot above, a streak from the eye to the mouth, a small dot between the antennæ and a spot on the base behind each eye bright
orange yellow. Eyes brilliant coppery red with a golden yellow reflection in the living specimen. Antennae white. Palpi white, their tips brownish. Thorax pale yellow above, pale bright green on each side, bluish white beneath; first segment with a row of three equidistant bright orange spots on each side, the anterior one largest and placed rather more outwardly, an impressed transverse line across the middle; second segment with an impressed longitudinal line crossing the two anterior elevated lobes, and a bright orange spot on each side on the anterior edge. Abdomen pale greenish yellow with a deeper bright yellow stripe above, on each side of which on the five first segments is a bright orange spot, each spot crossed by an impressed longitudinal line, those on the second and third segments larger, their centres tawny; those on the fifth segment small and pale. Legs pale bluish white, feet yellowish. Wings obtusely angular at their tips, the fore ones very slightly so; stigma opake pale green; veins pale green, the marginal one white; veinlets pale green, the two series towards the tip and the ends of most of the others black. Wings expand 1.05. Taken the first of August. This is the most variegated of our American species belonging to this genus. I name it in honor of my esteemed friend and correspondent, Dr. Sichel, President of the Entomological Society of France.

34. (33.) No orange spots along the sides of the back.

The New-York Golden-eye (C. Novaboracensis). Pale green with a pale yellow stripe from the mouth the whole length of the body. Eyes dark greenish golden when alive. A bright orange red stripe between each eye and the mouth. Sides of the head greenish white. Palpi pale dull yellowish, tips black and a black line on their outer side. Antennae whitish slightly tinged with dusky towards their tips. Thorax commonly with a large blackish spot anteriorly on each side, formed of two or three confluent smaller ones. Beneath greenish white. Legs very pale green, feet yellowish white. Wings angular at their tips, the hind ones more conspicuously so, veins pale green; veinlets black at both their ends except those ending in the inner and apical margin, the two series of veinlets towards the tip entirely black; veinlets of the outer cell of the hind wings black at both ends, those branching from the inner side of the rib vein black at their bases. A variety has the veinlets marked with dark green instead of black. Wings expand 1.05. Common the latter part of June and through most of the month of July, depositing its eggs singly, commonly on the margins of apple and other leaves, elevated upon threads the tenth of an inch long. This, like some of the other species, is perfectly inodorous.

35. (30.) Veinlets entirely pale green or white.

36. (37.) Stigma hyaline, scarcely obvious.

Harris's Golden-eye (C. Harrisii). Like the preceding in all respects, except that it is slightly larger and the veinlets of the wings are greenish white without any traces of dark green or black at their ends. Wings expand 1.15. Taken the last of July and in August. Its cocoon is smooth, of a bright pale green color and a regular oval form, 0.14 long by 0.11 in diameter, whilst that of the preceding species is rough externally, with numerous threads loosely
attached to its surface, and of a white color and a globular form. I have heretofore regarded this species as the *Chryso/a Perla* of Europe, and it is probably the species designated under this name by Dr. Harris (New England Insects, page 215). It does not appear to be fully settled to what species this name is to be applied, the British entomologists (Curtis, Journal of the Royal Agricultural Society, iii, 63; Stephens, Illustrations Mandib. vi. 105) describing a different insect from that of Rambur (Neropteres, p. 424). But on comparing our species with the full descriptions given by these authors, it is evidently distinct from both the European species that have received this designation, neither of which appear to possess a paler dorsal stripe and some other marks belonging to our insect.*

37. (36.) A blackish brown opake spot on the stigma.

The Virginia Golden-eye (*C. Virginica*). Immaculate, save a blackish spot on each side of the thorax at its apex. Wings slightly angular at their tips, veins and veinlets pale green, those branching from the inner side of the rib vein faintly tinged with dusky at their bases; first veinlet of the second row towards the tip black, and margined with smoky; stigma with an opake brown spot, more strongly marked on the hind pair. The small semi-oval cell which is formed in the straight mid-vein towards its base in all our other species is here irregularly quadrangular, and bounded by straight veinlets on each of its four sides. Wings expand 1.35. Taken in Virginia, near Cartersville, by the late Thaddens A. Culbertson, of Chambersburg, Pennsylvania, whose love of science and activity in its pursuit, rendered his early death a loss to our country.

38. (19.) Cheeks pale and without any spot or dot.
39. (42.) Antennæ black towards their bases.
40. (41.) A black stripe on the outer side of the basal joint of the antennæ.

The Stripe-horned Golden-eye (*C. lineaticornis*). Pale green. Head white, greenish on the top with two or three small dark brown dots on each side anteriorly, upon the upper edge of the sockets of the antennæ. Antennæ pale brown, basal fourth part of their length black, basal joint white with a

* Next to the *Perla*, Fabricius describes a species from the Society Islands in the Pacific ocean, which he met with in the cabinet of Sir Joseph Banks, which is rather larger than *Perla* and of an ash gray color with whitish wings and antennæ double the length of the body, from which last character he names it *filusus*, or the Threadlike golden-eye. I have specimens from the same locality, presented to me by Lieut. Pattison, U. S. Navy, which are perhaps the same species, as they coincide with the description in most of its points. They, however, are rather smaller than *Perla*, the wings expanding from 0.75 to 0.90, and only the posterior part of the thorax is ash gray, its anterior part and the head being bright yellow and without spots. The antennæ are double the length of the body, blackish, becoming yellow at the base, with a black dot on the upper side of the basal joint; the wings white, but pellucid, their veins and veinlets pale dull yellow. Should this prove to be different from the Fabrician species, as it apparently is, it may appropriately be named the *Chrysopa filicornis* or Thread-horned golden-eye.
black stripe the whole length on its outer side. Thorax with an impressed transverse line forward of the base of the first segment, and a longitudinal one on the anterior elevated lobe of the second segment. Legs white. Wings very slightly angulated at their tips; stigma marked by a slight opacity; veinlets dusky or black. Wings expand 1.10. Taken the middle of July.

41. (40) A black dot on the outside of the first joint of the antennæ at its tip.

The Dotted-horned Golden-eye (C. puncticornis) is perhaps only a variety of the preceding, as it corresponds with it in all respects, except that the basal joint of the antennæ has only a black dot at its apex on the outer side, and there are no dots on the edge of the sockets of the antennæ; the first segment of the thorax has two transverse impressed lines and a longitudinal one behind the middle. The abdomen has a brown stripe above on each side. Wings expand 1.15. This also occurs in the middle of July.

42. (39.) Antennæ pale.

The Consumptive Golden-eye (C. tabida) is pale green, almost white; the head is white and without spots, except a slight discoloration on the cheeks in some individuals which commonly disappears in the preserved specimen; the antennæ are white their whole length; the thorax is white along the middle, and pale green upon each side; the wings are obtusely angulated at their tips, their veins white tinged in places with green, the veinlets greenish white, their ends black, the two series towards the tip entirely black. Wings expand 0.95. Occurs the fore part of August.

The Lace-wing flies pertaining to the genus Hemerobius differ from each other much more than these we have been considering. They are generally of pale dull colors, but vary greatly in size, in the veins and spots upon their wings, &c. Most of the following species have three longitudinal veins branching from the rib vein towards its base on the inner side; the three last species however, have only two such veins, whilst the first has several, and the second has four.

The Freckled lace-wing (Hemerobius irroratus, Say) is black and hairy with a pale yellowish stripe on the middle and another upon each side of the thorax. The head, scutel and under side of the body is also pale yellowish. The wings are hyaline and glassy, with numerous irregular blackish spots and dots, those on the margin larger and alternated with whitish spots, and there is a largish darker colored spot near the middle and another towards the tips of the inner longitudinal veins, situated upon their connecting veinlets. The veins are black alternating with white. The hind wings are without spots except in the region of the stigma; their veins are black with only the marginal and rib veins alternating with white. The wings expand from 2.25 to 3.20
This species is rather rare. It begins to be met with about the middle of July and continues until the arrival of cold weather.

Mr. Stephens has also described a species under this same name. Mr. Say, however, appropriated the name to our insect more than ten years anterior to its use by Mr. Stephens. Another name therefore becomes necessary for the British species, which, if it has not already been re-named should be designated the Stehenschützii, in honor of its first describer, the eminent entomologist recently deceased.

Mr. Say in connection with the preceding (in the appendix to Long's Expedition, page 306) describes another species, the vittatus or Striped lace-wing, from a specimen in the Philadelphia museum, found by Mr. Titian Peale, in New Jersey. This is of the same size with the Freckled lace-wing and closely resembles it, but has the body of a pale yellowish color, with a broad blackish stripe upon each side of the thorax, and a small white spot on the outer edge of the fore wings near the tip. I have never met with this, which appears to be a rare species.

The Alternated lace-wing (H. alternus) is dull whitish or yellowish white varied with dark brown, and is clothed with short pale yellowish hairs. Its face and a stripe on each side of the thorax is blackish brown. The abdomen is dull whitish with a clearer white stripe along each side, which is margined above by a row of spots and below by a slender line of a brown color. The wings are pellucid and iridescent red and green; the veins are white with alternating blackish spots giving off fine bristles of the same color. The veinlets are black, robust, and broadly margined with smoky, forming two irregular rows of spots across the wing, with a third short one between them upon the inner margin. The margin is whitish, with dusky spots of different sizes, the larger spots having two or sometimes only one smaller spot between them. The hind wings are pellucid, their veins white, those next to the rib vein with dusky spots, the veinlets blackish but not margined with smoky; the inner fork of the innermost longitudinal vein is also blackish from the anastamosing veinlet half way to the furcation. The margin of these wings is whitish alternating with dusky spots around the apex. A dot or short line is placed on the margin between the tips of all the veins and their forks. The wings expand 0.80. This occurs the last of June, particularly upon pine and hemlock bushes.

The Stigma-marked lace-wing (H. stigmaeaterus) has the veins of the fore wings black with white bands; the cells are smoky with clearer spots at each of the white bands upon the veins; stigma opake tawny-reddish; two series of black anastamosing veinlets; a third veinlet near the inner base connecting the first longitudinal vein with the inner fork of the second longitudinal, and on the opposite side continued to a branch of the first longitudinal, thus forming two closed basal cells, the outer one of which is long and narrow, with the second longitudinal vein forking near the middle of this cell. This last mentioned veinlet is more robust and more obviously margined with dusky than the others. Head and antennae pale dull yellow; legs paler; thorax and abdomen blackish brown. A variety which is common has the tip of the abdomen pale yellow, and another variety has a pale stripe along each side of the abdomen. The wings expand from 0.55 to 0.60. This is a common species throughout the Northern and Western States, occurring from March until October, resting upon the foliage of various evergreen and deciduous trees, and
upon the grass of meadows and prairies. I have met with it upon peach but never upon apple leaves. The margin of the fore wings presents a curious appearance, being occupied like several of the other species with a row of dots, which, when magnified, resemble a string of beads, and it is almost always the case that, around the entire margin, every fourth dot is white, the other three being black.

The Chesnut lace-wing (H. Castaneæ) has all the veins white alternately with black or brown rings, with the usual two series of veinlets black feebly marginated with dusky; a large blackish dot on the first longitudinal vein at the apex of the outer basal cells, and a smaller one at the next fork beyond this, and similar dots on the inner rib-vein at the origin of each of the discoidal veins; wings hyaline, the margins faintly tinged with smoky. Body whitish with a large spot under each eye, a stripe on each side of the thorax and a row of spots on each side of the abdomen, brown. Wings expand 0.65. This is one of the most common species throughout the northern and northwestern States, and both the larvae and the perfect insects may always be found upon chestnut trees infested with plant-lice, and also upon the walnut and other trees, from April till October. It varies much in the depth of the color of the dots on the wings and the rings upon the veins, these being sometimes black and very distinct and at other times much more faint, either brown or tawny. The dots on the margin are white interspersed irregularly with black ones. A variety has all the rings upon the veins black and more broad than usual, and instead of the three dots which commonly occur upon the inner rib-vein, this vein is annulated with black through its whole length. The larva is white or tawny yellowish, with a slender brown line in the middle and a row of blackish spots on each side, the head with two large longitudinal black spots and a black dot above the base of each leg. Its sides have a serrated appearance, from a row of projecting tubercles the tips of which are furnished with slender radiating hairs.

The Preserver lace-wing (H. tutatrix) has translucent wings with white veins, which on the fore wings have black rings at somewhat regular intervals, and from each side of each ring proceeds a short smoky brown line, which is inclined towards the apex of the vein, thus forming a series of V-shaped marks crossing the veins at each ring; near the base of the inner margin of the fore wings are a few black dots. The body throughout is white, tinged with yellowish; the thorax has three brown spots on each side which are often somewhat confluent into a continuous stripe; the abdomen has a row of eight brown spots each side of the middle, situated upon the sutures. The wings expand 0.60. This is much like the preceding species, but is a size smaller, with the wings more clear and glassy and without any dusky tinge towards their margins, and with the series of marginal dots all white. It was captured in September upon apple trees.

The United-veined lace-wing (H. conjunctus) has pellucid wings becoming dusky towards the margins; veins of the fore wings white with blackish rings and bands; a blackish spot around each of the veinlets except the two innermost ones, and a smaller spot at the base of each discoidal vein; marginal dots alternately black and brown, the black ones occupying the apices of the veins; lower wings and their veins without spots. Wings expand 0.53. The wings are spotted much like those of alternatus, except that the margin is
wholly immaculate. Its spotted wings at once separate it from the following species, which differ from all our other lace-wings with three discoidal veins by having, like this species, an anastamosing veinlet running inwards from the base of the first discoidal. This species occurred upon pine bushes the latter part of May.

The Pine-bush Lace-wing (*H. Pinidumus*). Wings hyaline, slightly tinged with smoky, the marginal dots all of a uniform brown color; veins of the fore wings white with brown rings; veinlets black margined with dusky, forming a few brown spots, of which three or four form a curved row across the disk. Body pale dull yellow, sides of the thorax brown. Wings expand 0.45. This is nearly related to *tutatrix*, from which, however, it is readily distinguished by having a slender anastamosing veinlet connecting the second longitudinal vein with the base of the third longitudinal or the first of the three which branch from the rib-vein. It may frequently be met with upon pine bushes, from May till the last of July.

The Glassy Lace-wing (*H. hyalina/us*) is much like the preceding, but the wings are more clear and glass-like, their veins very faintly mottled with dusky the veinlets colorless instead of brown and not in the least margined with dusky, and in the middle of the inner margin forward of the medial series of veinlets, are two or three veinlets connecting the first longitudinal vein and its branches with the margin. The marginal dots are unicolor. Wings expand 0.45. Possibly this is only a variety of the preceding. It occurs with it upon pine bushes in May, June, and July.

The Little Friend Lace-wing (*H. amiculus*). Two discoidal veins only arising from the inner rib-vein, as in the remaining species. Wings hyaline mottled with smoky dots and irregular unequal spots; margin of the fore wings with a regular series of black dots, one between the apex of each of the veins, but none upon the tips of the veins; veins brown dotted with black, more conspicuously so in the axilla and the area outside of the rib-vein; veins of this last mentioned area (the costal) forked; the two rib-veins rather distant from each other, with an anastamosing veinlet towards their base; second discoidal fork anastamosing with the outer branch of the first near its base, then forking, with the outer fork anastamosing twice with the rib-vein and once with the inner fork; slightly forward of this last is another veinlet connecting the inner fork of the second discoidal with the outer fork of the first discoidal, and a second, commonly continuous with this last, connecting the outer with the middle fork of the first discoidal; another veinlet is situated half way between this and the base of these forks, which is the first of a series extending inwards and bordered with dusky, which color is continued onwards to the inner margin; there are also three veinlets towards the base. The hind wings are hyaline and without spots or veinlets; the margin has a dot between the tip of each vein. Body dull brown, antennae yellowish, legs dull white. Wings expand about 0.42. Taken from May until October, on peach trees and on wild shrubs, both in this State and Illinois.

The Western Lace-wing (*H. occidentalis*) has the wings hyaline and not mottled with smoky dots or clouds, but adorned with two faint parallel lines of a more dusky tinge in all the cells; margin dusky; veins and veinlets robust, black; a black dot on the margin between the tips of each of the veins; outer fork of the first discoidal vein anastamosing with the rib-vein near its base instead of with the second discoidal as in the preceding species, the other
veinlets similar in situation to those of the preceding. Body blackish; antennae shorter than the body, robust, thread-like and not tapering, black; legs pale. Wings expand 0.38. Taken in Illinois, on bushes beside Henderson river, the first of October.

The Titman lace-wing (H. delicatulus). Two veins arising from the inner rib-vein, the first more towards its base, the second more towards its tip than in the preceding species; wings hyaline with dusky dots on the veins and a single row of veinlets running obliquely across the disk from the rib-vein to the first longitudinal and broadly margined with dusky; veins pale brown, those of the costal area blackish, the alternate ones towards the base forked, all the others simple; margin thinly fringed with short hairs, a dot on the tips of the veins and a smaller one between them. Body dusky yellowish; antennæ longer than the body, brownish; legs pale. Wings expand about 0.40. Swept from the grass of prairies in Illinois, the first of October.

Another insect closely related to the Hemerobiidae, and the larva of which is supposed to feed upon plant-lice, may be noticed in this connection. It is of minute size, and by no means rare, occurring upon apple and other trees, and also upon the wing at twilight or in shady situations, from early in June until the end of July. It is so anomalous that, at one time and another, I have been occupied several days in investigating it and determining where it should be arranged. When first captured I supposed I had a species of Aleurodes in hand, its minute size, its mealy-white coating, and the size of its wings giving it a close resemblance to the insects of that group. Indeed the European species allied to this were at first placed by Mr. Stephens in that family. But the number of veins in the wings and of joints in the feet and antennæ, and above all the structure of the mouth with jaws for masticating food and not a beak for suction, absolutely excludes these insects from such an association, and also from being arranged with the moths, where the old authors placed them. It is obvious that our insect pertains to the order Neuroptera. And in this order its many points of resemblance to the Coniopteryx Tinetiformis, Curtis, leaves no doubt that it finds its true relatives with that insect and its associates, the classification of which has so much perplexed the entomologists of Europe. Whilst Messrs. Curtis and Stephens associate this genus with the Psocidae, Mr. Westwood regards it as having more affinities with the Hemerobiidae. Important differences, however, separate it from both of these families. It is unlike the Psocidae in having five-jointed feet, and antennæ of a different form and with joints doubly numerous; and differs from the Hemerobiidae in having wings
with but few veins and veinlets, the hind pair smaller than the anterior, &c., and is separated from both these families by the mealy coating of the perfect insects. Its arrangement in either is evidently incongruous Dr. Burmeister has therefore elevated these insects to the rank of a distinct family, named Coniopterygidae or Mealy-wings, the single genus Coniopteryx, with its four European species, being all that is at present known pertaining to this family.

On comparing our insect with those of Europe, although its general resemblance is so close, we notice some important discrepancies in its details. The veins of its wings are more simple and less connected by anastamosing veinlets, there being but one of these veinlets in the disk of the wing, and three near the base, arranged in a continuous line, and leaving only the outer and inner veins insulated from their origin to their tips. Thus, while the European insects have three closed discoidal cells, in our insect there is but one. The veins of the hind wings in the European species are forked and connected by veinlets, whilst in ours there are no veinlets, and only one of the veins is forked. Westwood states the wings to be wholly destitute of ciliae or fringe-like hairs along the margin, whilst here a series of short, fine erect hairs are very distinct along the apical and inner edges. The eyes moreover are widely notched and kidney-shaped, instead of being round. These differences forbid our including our insect in the same genus with those of Europe. It will therefore form a second genus in this family, for which I propose the name Jileuronia (Greek ἀκροβολόν, farina or dust) having allusion to the mealy coating with which these insects are covered. And as Mr. Westwood (through whose kindness my cabinet has been enriched with specimens, particularly of some of the minute and interesting species which he has described) was the first to separate the insects of this group generically, this species may appropriately be dedicated to him. Whilst the more simple veins of its wings would approximate this family more closely than heretofore to the Psocidae their ciliated margins give it an additional resemblance to the Hemerobiidae, and leave the question as to which

[Assem. No. 215.] 7
of these families the present is most nearly related in much the same doubt in which it has hitherto been.

Westwood's mealy-wing (Aleurotria Westwoodii) measures one-tenth of an inch to the tips of its wings which project a third of their length beyond the tip of the abdomen, against the sides of which they are held almost perpendicularly when at rest. It is of a blackish color, its abdomen bright yellow of a paler or deeper tint, its legs pale, and the whole surface of its body and limbs is dusted over with a white meal-like powder, except the antennae, which are black, thread-like, about two-thirds the length of the body and composed of about twenty-eight joints, whereof the basal is the thickest, and the second is longer than those which succeed, which are all of equal size and short cylindric, their length and breadth equal, the apical oval. The head is elevated upon a short neck in the living specimen and is wider than long, round and flattened in front; the palpi rather long; five-jointed, the apical joint oval, and as long as the two which precede it taken together; the labial palpi three-jointed, their apical joint large, and egg-shaped. Legs of medium size, the hind pair longest, and about equaling the body in length; feet five-jointed, the basal joint cylindric and forming nearly half of their whole length; the third joint shortest, the tips ending in two minute hooks. The wings are broad, rounded at their ends, with six veins proceeding from the base, whereof the second or rib-vein gives off two branches, one at the end of the anastamosing veinlet near the base and the other forward of the middle, both of these branches forking rather beyond their middle, thus making ten veins which end in the apical and inner margin. The first of these branches forward of its furcation sends an anastamosing veinlet inward to the next or mid-vein, which, with the rib-vein, are obviously thicker and more robust than the other veins. The hind wings have five veins ending in their margin, whereof the second and third unite near the middle of the wing.

Having occupied so much space in describing the aphis-lions and their habits, we present but a brief sketch of the habits of the remaining destroyers of the plant-lice, reserving a description of their species for a future occasion.

Equal to, or even surpassing the aphis-lions, in the havoc which they make among colonies of plant-lice and the numbers which they devour, are the insects popularly called lady-bugs or lady-birds. These pertain to the family Coccinellidæ, in the Order Coleoptera. The eggs of these insects—smooth, oval, and of a bright yellow color—may frequently be met with upon the under surface of leaves, placed in a cluster of twenty—thirty or forty, in contact with each other, and gummed by one end to the leaf. These hatch within a few days, a small blackish larva coming from them, which is slender bodied, tapering posteriorly and with six legs anteriorly. It walks about with much animation, and
coming to a plant-louse, much larger than itself it may be, the little hero, though only a few minutes old, boldly seizes the louse, which, like a cowardly poltroon, makes no resistance except trying to pull himself away. But the little assailant hangs lustily to him, preventing his advancing a single step further, and using his anterior legs as arms, he commonly raises the louse off from the leaf and leisurely devours his body, leaving only the empty skin remaining. As he grows, the sides, and in some species the whole surface, becomes diversified with bright red and yellow spots and rows of tubercles or elevated points. He is a most active voracious little creature, running briskly over the limbs and leaves in search of his prey, and consuming hundreds of aphides. He grows to about a quarter of an inch in length in the course of two or three weeks; he then fixes himself by his tail to a leaf, or the limb or trunk of a tree, and hanging with his head downwards the skin cracks open along the middle of his back, and the smooth back of the pupa protrudes partly out of the prickly skin of the larva, and thus remains, the old larva skin continuing to cover the pupa on each side and beneath. But in some of the species, a fact which I do not find mentioned by authors, the larva skin is thrown entirely off, its shrivelled relics remaining around the tail. It is thus with one of our largest species, named the apple-tree lady-bird (Coccinella Muli) by Mr. Say, but which had long before been described by the celebrated French entomologist Olivier, under the name of the fifteen-spotted lady-bird (C. 15-punctata); and probably the pupa of the European C. occellata will be found to throw off its larva skin in this same manner, as these two species are closely related, and have been elevated to a distinct genus named Anatis by Mulsant. The pupa of the fifteen-spotted lady-bird is quite pretty, being of a clear white color with the middle of its back tinged with flesh-red, and with from two to six black spots of different sizes on each of the segments, the sheaths of the elytra also having a broad black border upon their inner side and four black spots. Exposed as the pupa is upon the surface of a leaf or of the bark, it probably is often discovered and devoured by birds, and to save it from such a casualty appears to be the design of Nature in having most of the species retain their prickly larva skins. When annoyed by the
approach of a fly or other insect, the pupa gives a sudden spiteful jerk, by which to frighten the intruder away, and if this fails, by a sudden spring it elevates itself so as to stand out at right angles from the surface to which it is attached, remaining motionless in this posture about half a minute, when by a similar spasmodic snap it returns to its usual position.

The insect remains dormant in its pupa state about a fortnight, when its hard exterior shell cracks open, and from it crawls a small shining beetle nearly the size and shape of a half pea, though often much smaller than this. The species generally are prettily colored, being bright red, yellow or white, with black spots, or black with red or yellow spots. These different spots and colors serve as marks whereby to distinguish the different species, of which nearly a hundred are named and described, inhabiting the United States. The perfect insects subsist upon plant-lice also, though they pursue and devour them with less avidity than when in the larva stage of their lives. They may always be met with where plant-lice abound, and I have known persons who supposed that it was these insects which bred the plant-lice, and who consequently made it a point to destroy every one which they could discover upon the currant bushes, cherry trees, &c., in their yards, and who were surprised to find that notwithstanding all their care and pains in searching out and destroying these "old ones," their shrubs and trees appeared every year to be worse infested with lice than were those of their neighbors. This fact is but one of a multitude which might be adduced, showing to what sad mistakes ignorance leads, and how important it is that information with respect to our insects and their habits should be diffused among our citizens.

Other inveterate enemies of the plant-lice are certain two-winged flies pertaining to the Family Syrphidae, in the Order Diptera, which family has the genus Syrphus as its type. These flies resemble our common house-fly in size and shape but are much handsomer, being of a bright yellow color with various spots and bands of black, according to the species. They may frequently be seen in summer hovering around and alighting
upon flowers. These flies drop their eggs, one in a place, upon leaves and twigs which are infested with plant-lice, so that their young may have their appropriate food immediately around them the moment they require it. One can seldom inspect many infested leaves without meeting with one or more of the eggs of these flies scattered around among the lice—little white smooth oval bodies, much like the eggs which the bot fly glues to the hairs of horses' fore-legs. From them a maggot hatches which in its motions will remind one of a leech or blood-sucker. It has no eyes, and consequently cannot see in which direction to crawl in search of its food; but fixing the hind extremity of its body to the surface of the leaf, it reaches as far as it is able to stretch itself and feels around first upon one side and then upon the other.

If nothing is discovered it moves along one or two steps and again feels all around, until finding a plant-lice it at once fixes its tiny mouth at the slender-pointed anterior end of its body to its prey, having such power of suction as not only to hold the louse from escaping but to tear it away from its attachment and raise it up in the air wholly away from the surface of the leaf. The louse sprawls its long legs about in a vain endeavor to touch some support so enable it to escape. Its body is soon perceived to be diminishing in size, the worm sucking out the fluids which it contains, and in a minute's time, or less, nothing of it remains but an empty shrivelled skin. These Syrphus-worms are of various colors, almost transparent and watery, or white, or greenish, and commonly clouded or spotted, particularly in the centre of their bodies, with more opake white, yellow, tawny or red, and their skin is so thin and transparent that the circulation of the fluids within may be distinctly seen even with the naked eye in the larger worms. Some of them have two cylindrical processes like little straight horns jutting out from the hind part of their bodies. One or more of these worms may almost always be met with wherever a colony of plant-lice is located, and one medium sized worm will consume a hundred of these insects in an hour. The ants do not appear to molest them, but the apsis-lions, as already remarked, devour them with avidity. When the worm has completed its growth it fixes itself to the surface of the leaf or the bark, and contracts to a shorter oval form; its skin becomes hard
and horny, with numerous impressed transverse lines, and changes to a dull yellow or a black color, and those species which have two horns forward of the tip still retain them. Within this shell the insect puts on its pupa form, from which the fly subsequently hatches.

The aphis, likewise, has foes within as well as without. In addition to the several insects of which we have now treated, all of which attack it externally, it has internal enemies also, a group of insects which dwell in the interior of its body during their larva state, and eventually kill it. These are nearly as efficient in keeping its numbers reduced as any of those which we have been considering. We will speak more particularly of them in connection with the aphis which infests the cherry.

A succession of the several species of these different kinds of destroyers are making their appearance the whole season through, and as many of these species are among our most common insects, it will at once be perceived that they render us most important services in destroying these pests of vegetation, and preventing them from becoming excessively multiplied notwithstanding their unparalleled fecundity. But without actually observing them at their accustomed work no one can fully appreciate their value to us, and the amount of herbage which they save from destruction. Wherever plant-lice become numerous, there these several kinds of enemies speedily congregate and rapidly multiply, devouring incredible numbers of these vermin, and often in a surprisingly short space of time completely exterminating them.

AFFECTING THE FRUIT.

In a round cavity ate near the tip end of the young fruit; a minute, very slender blackish-purple insect, with narrow silvery-white wings upon its back resembling a long Y-shaped mark.

The Apple Thrips. Phlaeothrips Malii.

Although a profusion of flowers in the spring is often hailed as a harbinger of a copious yield of fruit, this expectation is very frequently disappointed. Whilst they are yet young, quantities of
apples, plums, and other fruits wither and fall from our trees, often literally covering the ground beneath them. Young apples are thus blasted in consequence of the punctures and wounds which they receive from the Apple worm or Codling moth, the Plum weevil, and other insects. Among these destroyers is one which has hitherto escaped notice, more in consequence of its minute size, probably, than its rarity; for we suspect it will prove to be a common insect.

In the month of August several apples were noticed upon the trees, which were small, withered, and ready to fall, yet without any of those worms in them which occasion the destruction of so much fruit at this season of the year. On searching for the cause of this withering of these apples we found a small cavity or little hollow at the tip end, commonly close beside the relics of the flower. This cavity had the appearance of having been gnawed; it was about the size of a pea, and its surface of a black color. Several of these cavities were occupied by a minute slender insect; and from appearance I inferred that the young of these insects had taken up their residence upon the apples whilst they were quite small, and by wounding them slightly day after day, had retarded their growth and finally caused them to wither. It is possible that some other insect had originally produced these wounds, and that these which were now there had been attracted to the wounds to suck their juices; but every appearance indicated that these were the real culprits. They pertain to the group Thrissidae, which is composed almost entirely of minute species like the present, which subsist upon the juices of plants, especially melons, cucumbers, beans, &c., to which they are often quite injurious, producing small decayed spots upon the leaves. They also occur in numbers upon different flowers. We have several American species of these insects, none of which have yet been studied out and described. This which occurs in wounded spots upon young apples, appears to pertain to the genus named Phlaeothrips by Mr. Haliday, and I propose for it the specific name Mali, or the Apple Thrips.
This insect measures only six hundredths of an inch in length and one hundredth in width. It is polished and shining, and of a blackish purple color. Its antennæ which are rather longer than the head and composed of eight nearly equal joints, have the third joint of a white color. The abdomen is concave on its upper side, and is furnished with a conical tube at its tip which has a few bristles projecting from its apex. The wings when folded are linear, silvery white, and as long as the abdomen; they are pressed closely upon the back, spreading asunder at their bases, and appear like an elongated white Y-shaped mark. Viewed from above, the head is of a square form, longer than wide. The first segment of the thorax is well separated from the second, is broadest at its base, and gradually tapers to its anterior end, where it is as wide as the head. The following segment is the broadest part of the body and square, with its length and breadth equal.

The insects of this tribe, abroad, are found to be great pests and difficult to exterminate. Dusting the vegetation which they infest with flour of sulphur and washing it off a few days afterwards has been found successful in some cases. It is probable that when young and in their larva state they are more tender and more easily destroyed than when mature. But until the history of this species which infests our apples has been more fully observed we shall scarcely be able to decide upon the most judicious measures for combatting it.
2. THE PEAR.

AFFECTING THE LIMBS.

A hemispherical chestnut-brown scale, the size of a half pea, upon the under sides of the limbs the latter part of June.

As the pear is so closely related to the apple, most of the insects which affect one of these trees will be found upon the other also. We have already noticed this fact in repeated instances when considering the insects of the apple tree. But in addition to those species which are common to both, there are others which are limited to one of these trees and never invade the other, except perhaps in those extreme cases when they become so multiplied upon their appropriate tree that it fails to afford sufficient room and nourishment for all the individuals which are called into existence.

Of those insects which are peculiar to the pear, the only one which has as yet fallen under my notice is a species of bark-louse, which, it is altogether probable, is the same which occurs upon this tree in Europe, named *Coccus Pyri* by Schrank (Fauna Boic. ii. 1. 145), and which pertains to the modern genus *Lecanium* in the Family Coccidæ and Order Homoptera. This insect had never been publicly noticed as an inhabitant upon this side of the Atlantic, that I am aware, when, upon the first of July, 1854, I met with it quite common upon pear trees in the cities of Albany and Troy. I observe, however, that Dr. Harris, in his discourse before the American Pomological Society in September last (page 8), incidentally mentions the fact that our pear trees "suffer occasionally from bark-lice."

The form under which this insect appears is that of a hemispherical scale about 0.20 in diameter and of a chestnut brown
color, adhering to the bark on the under sides of the limbs, particularly of young trees which are growing thriftily. These scales are the relics of the dead females covering and protecting their young. Some are of a darker color than others, and smaller ones occur which are of a dull yellow hue. These scales are not freckled with paler spots like many of our species of bark-lice; their surface frequently presents shallow indentations as though it had been slightly pressed upon in places with the head of a pin, and the outer margin is wrinkled, as shown in accompanying figure, and is sometimes marked with faint black bands. If one of these scales is removed a round white spot the size of the scale remains upon the bark, appearing as though made with chalk. Upon the underside of one small twig, in a distance of nine inches, thirteen of these scales occurred and five white spots where other scales had been rubbed off.

At the time when I noticed these scales the young lice under them were active and so minute that they appeared to the eye like particles of dust. I conveyed a twig to my residence and bound it to a thrifty limb of a young apple tree, to ascertain whether they could subsist upon this tree; but they all perished, not one of them leaving the pear twig, that I could discover. The following May the chalk-like spots where the scales had been fixed upon the twig were still distinct, the storms and frosts of autumn and winter having scarcely dimmed them in the least.

Beneath the scales the young lice are interspersed through a mass of white cotton-like matter. This subsequently increases in volume and protrudes from under one end of the scale, elevating it from the bark, as shown in the annexed cut. The young lice now crawl out from among this matter and diffuse themselves over the smooth bark, appearing to the eye like minute whitish specks or fine dots. When magnified they are found to be of an oval form, somewhat flattened, about the hundredth part of an inch in length, and two-thirds as broad as they are long. They are of a dull white color, with six legs and two short antennae of a hyaline-white appearance. The antennae are thread-like or of equal diameter through
their whole length, and are about one-fourth the length of the body. They are composed of several small joints and are clothed with a few fine longish hairs.

I have not had an opportunity to trace the history of this insect further, but doubtless, like the other species of this genus, the young larvae in a short time fix themselves to the bark and increase somewhat in size, but retain the same form through the winter; and early in the spring the males enter their pupa state, and soon after come out under the form of minute delicate flies with only two wings; whilst the females, without undergoing any very obvious change, gradually grow to the size and form of the hemispherical scales already described.

A parasitic insect, which probably pertains to Mr. Westwood's genus Coccophagus, in the Family Chalcididae and Order Hymenoptera, lives in the bodies of the females, subsisting upon their young. The worm, which is doubtless similar to that noticed under scales of the Apple bark-louse, but of a larger size, having completed its changes makes its escape through a rather large round hole which it gnaws in the scale. Several scales were observed which were thus perforated, the hole being rough and jagged at its edges, and the scale being of a paler color at the part surrounding this peforation.

This insect cannot but prove very detrimental to the pear tree when the females were present in such numbers as they were in the instances in which I met with them. No tree can remain thrifty and vigorous with such a number of tiny beaks inserted everywhere in the smooth tender bark as a few of those females upon each limb will breed. Fortunately they are of such a size that they can easily be seen upon a careful inspection of the under sides of the limbs, and can readily be removed. They should be looked for the latter part of June, as the females will then have attained their full size; and wherever they are discovered the under side of the limbs should be rubbed with a brush or a sponge to dislodge every scale which can be perceived. Being at this time nearly or quite dead, and wholly destitute of legs, they will be unable to reascend the tree when brushed off, nor are the young sufficiently strong to crawl away from their parents.
3. THE PEACH.

AFFECTING THE ROOT.

Cankering and destroying the bark of the root and causing the gum to exude profusely; a white cylindrical fourteen-jointed worm, with six true legs and ten pro-legs.

The Peach-tree Borer. *Ageria exitiosa*. Say.

With all the care and attention which can be bestowed upon the peach tree, it is much more short lived at the present day than when the country was newer. What medical men would term a change of "diathesis" appears to have taken place; some alteration in the soil or climate has occurred, whereby this valuable fruit tree cannot be grown so readily and successfully as formerly. Hon. John A. King informs me, that when the property which he now occupies at Jamaica, on Long Island, was purchased by his father, in the year 1816, there were growing contiguous to the farm mansion, peach trees which were thrifty and vigorous, although they were scores of years old and of such size that it was necessary to climb up among the limbs to gather the fruit. The fruit, moreover, was of a finer quality and more delicious flavor than any which is met with at the present day. Upon the same ground he can now obtain but one fair crop of fruit; as soon as a tree has yielded this it produces no more, but rapidly dwindles and dies. The Messrs. Parsons, nurserymen at Flushing, confirm this statement. They say that four bearing years is the utmost that can be anticipated from this tree, and that to insure a supply of this fruit annually, it is indispensable that new trees be set out every year. They say there would seem to be some peculiar principle or quality in the soil favorable to the growth of the peach, which has now become exhausted upon
Long Island and in the adjacent districts, so that this tree does not now flourish as formerly. And similar to this is the concurrent testimony of nurserymen and writers in our agricultural periodicals. Whilst upon new land at the west and southwest, without any of the care and attention which we here bestow, this tree grows with all its pristine vigor and luxuriance.

Two maladies, more particularly seem to attack and destroy this tree, preventing it from attaining that age and size which it formerly acquired. These are, the "yellows," which seems to be a kind of decline or consumption peculiar to this tree, and the borer or grub at the root, the insect which we are now to consider. This last it confessedly the worst enemy which the peach tree has to encounter in our country. During the past year, 1854, I noticed it everywhere, from the banks of the Hudson to those of the Mississippi. At the west, however, it is much less common, and by no means so destructive as with us. My own residence is near the northernmost limit where the peach can be cultivated, the severity of the winters commonly destroying the trees whilst they are young and tender; and as I here had never captured the moth which produces these borers, I have hitherto supposed this was beyond the limit to which this insect reaches. But of a dozen peach trees in my yard, now about ten years old, I the present spring, find all except one are destroyed, the roots being surrounded and enveloped in a mass of jelly-like gum from one to three inches in thickness at the surface of the ground, and the bark entirely eroded and worms of all sizes burrowing in it. And throughout this district of country the peach trees are almost all found to be dead the present spring. It is universally supposed and confidently affirmed that it has been the winter which has destroyed them. But in several instances where I have informed persons of the condition of my own trees, they find, on coming to examine theirs, that the roots are surrounded in the same manner with a bed of exuded gum, in which a number of worms are nestled. It is thus evident that it is the borer and not the winter that has occasioned this wide-spread calamity, and that the evil which we have suffered might have been averted by
timely care. It would appear that the excessive drouth of the past summer and autumn had favored the multiplication of the moths which produce these borers, bringing them out in such numbers that the roots of all our peach trees were stocked to repletion, and the insects were obliged to resort to other kinds of trees to dispose of a surplus portion of their eggs, as we shall presently see.

Many intelligent persons who are acquainted with this insect and the Apple tree borer only in their larva states, cannot fully persuade themselves that the two are really different insects, so much do the worms resemble each other in their external appearance and the habit of attacking the trees at the surface of the ground. But any one who places them side by side will readily perceive that they differ from each other in several important particulars. The Peach borer is cylindrical and not broader anteriorly, like the Apple tree borer; it has three pairs of small feet, whilst the Apple tree borer has none; it has only a few scattered coarsish hairs, whilst the Apple tree borer has numerous fine shorter ones. Such important differences prove that these worms are really distinct. They differ much more widely when they come to attain their perfect state. Whilst the Apple tree borer is transformed, as we have already seen, to a Long horned beetle, the worm of the peach tree changes to a four-winged fly, bearing some resemblance to a large wasp, and pertains to the Family Aegeriidae of the Order Lepidoptera.

This insect was named Aegeria exitiosa or the destructive Aegeria by Mr. Say, and was described by him in a communication giving an account of its habits by Mr. James Worth, which was published in the Journal of the Philadelphia Academy of Natural Sciences, (vol. iii. p. 216) in the year 1823. Mr. Worth having obtained the winged moths in July supposed this month only was the one in which the perfect insect makes its appearance. But whoever examines infested roots will find worms upon them of all sizes, at all times of the year. Even in the winter, small worms occur with others which are full grown, showing that these last will complete their changes much earlier in the season than
the former. The insect, however, does not commence coming out in its winged form so early as would be expected from the large size and matured appearance of many of the worms in the winter season. The stumps of five of my dead trees were allowed to remain undisturbed. Around these thirteen chrysalids were found upon the tenth of July, none of them having hatched the perfect insects. They were removed to a pot of moist earth, and the first winged moth came out upon the fourteenth of that month. The first female appeared upon the twenty-fourth, six males having hatched upon the preceding days. Twelve more chrysalids were found at this date and were placed in the pot with the others. Males and females continued to come out in about equal numbers afterwards, the two last of this stock making their appearance upon the fifteenth of August. The pupa state therefore lasts at least three weeks in the warmest part of the summer, and it appears to be the latter part of July and in August that the females come abroad to deposit their eggs in this latitude. Further south they doubtless begin to appear earlier in the season.

The eggs are smooth, oval, slightly flattened, of a dull yellow color and 0.025 long. Some of the dark blue scales from the tip of the abdomen of the parent are often glued to them. They are deposited upon the bark at the surface of the ground, and the worms hatching from them work downwards, at first in the bark of the root, forming a slender flexuous channel which becomes filled with gum. At a distance of an inch or two below the surface the whole of the bark of the root becomes consumed in badly infested trees, and the soft sap wood is also extensively gnawed and eroded, so that frequently the root is nearly severed, as shown in the accompanying figure. The larger worms in the winter season repose with their heads upwards, in contact with the exterior surface of the root, commonly in smooth longitudinal grooves which they have excavated, their backs being covered over with the castings mingled with the gum and with cobweb-like threads,
thus forming a kind of cell the cavity of which is considerably larger than the body of the worm inhabiting it. The smaller worms have no such cells, but lie promiscuously in the gum or between it and the root. Although from their habits they would seem to have no particular use for it, these worms, like those of their order generally, spin a silken thread as they crawl about, which is of sufficient strength to hold them suspended in the air when one drops from a stick on which he is placed.

When ready to enter its pupa state the worm crawls upwards to the surface of the ground, and there forms for itself a follicle or pod-like case of a leathery texture, made from its castings, held together by dry gum and cobweb-like threads. This follicle is of a brown color and oval in its form, with its ends rounded; it is about three-fourths of an inch long and over one-fourth in diameter, but is variable in its size, being sometimes but half an inch long. Its inner surface is perfectly smooth and of the color of tanned leather. It is placed against the side of the root, often sunk in a groove which the worm appears to have gnawed for this purpose, with its upper end slightly protruding above the surface of the ground. But if the earth has been recently stirred so as to lie loose around the root, the worm will commonly form its follicle an inch or more below the surface.

Among the means whereby to grow the peach securely from the depredations of this worm, Dr. Harris, in his discourse before the Pomological Society (page 9), suggests that of grafting it upon plum stalks, saying when it is thus reared he believes it is never injured by the borer. Unfortunately for the success of the plan proposed, the root of the plum is attacked by this same borer, in which it appears to thrive equally as well as in the peach root. My friend Mr. J. E. Gavit, of Albany, who is a close observer, recently assured me of this as an item of information which he presumed I would be reluctant to credit, not supposing I had myself already noticed the same fact. Some young plum trees in my grounds were found to be dead this past spring, and on rooting them up, the peach borer was discovered to be the
cause of the mischief, several of the worms being present in the roots. This, taken in connection with the modification which the habits of the worm undergo when in this situation, is a remarkable fact. Although the plum abounds in gum like the peach, none of this gum exudes from its root when attacked by this borer. The worm, therefore, having no covering to protect it does not erode the bark and nestle upon the outside of the root of the plum as it does in the peach, but lies under the bark and subsists entirely upon the soft sap-wood of the root. Commencing slightly below the surface of the ground it works its way downwards immediately under the bark for a distance of about four inches, forming a long and somewhat irregular cylindrical channel. The annexed cut shows this burrow as it appears when the bark is removed from the root. As the worm moves along it packs its castings which appear like a tan colored powder, into the channel behind it.

This is an important fact, showing that if no peach trees were cultivated in our country this species would still sustain itself without difficulty in the roots of the plum. Indeed, as this insect is a 'Native American,' wholly unknown in the peach trees of other countries, it is quite probable that before the peach was introduced upon this side of the Atlantic it bred exclusively in our indigenous species of plums, and has now almost entirely forsaken these and attached itself to this more congenial foreigner.

The **Larva** is a naked soft white cylindrical grub, slightly flattened on its under side (of which the left hand figure of the accompanying cut gives a view,) and when full grown measures over half an inch in length and nearly a quarter of an inch in diameter. It is divided into fourteen nearly equal segments by broad shallow transverse constrictions. Its head is shining yellowish red, marked in front with black and at base in the middle with whitish, which last is also the color of the throat. Two impressed lines on the face converge and meet each other towards the base of the head and then diverge. Inside of and parallel with these are two slender black lines, meeting each other in the form of a letter V. The jaws are black and strongly notched at their tips, forming two sharp equal teeth. The upper lip is blackish with a pale stripe in the middle. The palpi or feelers are conical and two-jointed, and inside of their base is the apex of the lower jaws.
a short obtuse projection with minute hairs at its tip. The antennae are conical and three-jointed, the last joint minute and the second one armed exteriorly with a short bristle. At their base on the under side of the head, are three or four dilated punctures. There are a few scattered brown bristles upon the head and also upon each of the other segments; those on the third, fourth, twelfth and thirteenth segments, are arranged in transverse rows, and on the other segments they are placed symmetrically and arise from faint, smooth, wart-like spots. The second segment is tinged with yellowish above and has a breathing pore upon each side. The two next segments are somewhat shorter than the following ones and are destitute of breathing pores. These three segments each bear a pair of conical legs ending in a black polished claw. The remaining segments except the two last show a faint stripe, at least posteriorly, upon the middle of the back, and each has also a transverse impressed line in the middle and a breathing pore upon each side. The two last segments, which perhaps should be regarded as one double segment, are narrower, shorter, and retractile, shutting into each other and into the segment forward of them, like the joints of a telescope. Beneath is a pair of prolegs upon the seventh and three following segments, which scarcely protrude from the general surface, but are very perceptible from their soles being furnished with two transverse rows of minute black hooks, about twelve hooks in each row; and the last segment has a single shorter row of six similar hooks upon each side.

The young worm is quite similar in its details to the mature one; its breathing pores upon the second and the twelfth segments, however, are much larger and more obvious than the intervening ones.

The Pupa enclosed within its follicle is at first white, the wing and leg sheaths and the thorax being slightly tinged with tawny yellow. The breathing pores form a row of tawny dots along each side of the abdomen, each segment of which has a row of little sharp-pointed teeth on its anterior and a second shorter row of smaller ones on its posterior margin, extending half way around, from one row of breathing pores over the back to the opposite row, these teeth being of a pale, tawny color, and directed backwards. The three apical rows of these teeth, however, have no intervening rows of smaller ones. At the tip is a row of eight larger teeth extending entirely around. It is by means of these teeth that the pupa when ready to disclose the winged fly crowds itself forward, out of its follicle. All the teeth become longer and more sharp-pointed as the pupa approaches maturity, and the whole of the surface now assumes a pale tawny yellow color, with a darker ring at each of the sutures.

The mature insect, like most of the species of butterflies and moths, varies considerably in its size. It measures from one-half to three-fourths of an inch in length, and the wings when extended, are from 0.80 to 1.30 across, the female being more variable in its size than the male and furnishing both the smallest and the largest individuals. The wings of the female also measure more than those of the male when their bodies are of equal length, the more thick and heavy body of the female plainly requiring larger wings to sustain it in the air.

The male is of a deep steel blue color, with various sulphur yellow marks, and has a glossy lustre like that of satin. The antennae are black, less than half as long as the body, abruptly curved outwards at their tips and densely fringed along their inner sides with numerous fine short hairs, with a slight
vacancy between them at each of the joints. The feelers are yellow on their lower sides; there is a paler yellow spot between the bases of the antennae and a deeper yellow transverse stripe at the base of the head both above and beneath. The thorax has a yellow stripe on each side of its middle, a transverse one at its base which is slightly interrupted in the middle, and a short broader one on each side under the wings; its base on the underside is white. The abdomen commonly has two slender yellow bands above, at the apex of the second and fourth segments, and a white line on each side of the tuft of hairs at its tip. The forward hips are yellow on their anterior face, the four others at their tips. The shanks are yellow at their tips, the hind ones have a yellow ring on their middle interrupted on the inner side, the other four have a large yellow spot on their anterior sides; their spines are white, their upper sides black at least on the basal half. The fore feet have a white ring at the apex of each joint, and a broad white stripe upon the inner side; the middle and hind feet have a slender white line on their inner sides, which is often nearly obliterated, showing only a few white scales at the apex of each joint. The wings are transparent and glass-like, with a slight tinge of smoky yellow; their veins, margins and fringe is steel-blue. The fore wings have a steel-blue band beyond the middle upon their transverse anastamosing veinlet, a slender yellow line upon their outer or anterior margin both above and below, and a similar line on the inner edge of their inner margin, the hind wings also have a similar line on the inner edge of their outer margin.

The following varieties occur in this sex:

a. The pale yellow spot between the bases of the antennae wanting.
b. The same spot enlarged and extending backwards to the neck.
c. The abdomen without white stripes upon the sides of the tail.
d. The abdomen without any yellow bands.
e. The abdomen with but one band, that upon the apex of the second segment wanting.
f. Three yellow bands, one on the apex of the fifth segment. Common.
g. Four bands, one on the apex of each segment from the second to the fifth inclusive, that upon the third segment often imperfect.

The female differs from the male so much that it would not be supposed to pertain to the same species. The abdomen is of a long oval form instead of being slender and cylindrical, and is twice as broad across the middle as that of the male. This sex is of a glossy steel blue color, with a purplish reflection in places, and blackish upon the face, and upon the middle of the abdomen is a broad band of a bright glossy orange yellow color occupying the whole of the fourth and fifth segments* except upon the middle of the underside, where, at least on the fourth segment some orange scales often occur interspersed with the steel blue ones. The antennae have no fringe along their inner sides. The fore wings are opake and of the same steel blue color as the body, their tips and fringes being of a purplish tint both above and beneath. The hind wings are transparent broadly margined upon both sides and marked at the base with steel blue, the glass-like portion being crossed by five robust veins, and com—

*Say describes the abdomen as having only the fifth segment of an orange color, but in every specimen which I have seen, the fourth segment also is of this color.
monly there are traces of a straw yellow stripe on the outer margin towards the tip.

The female presents the following varieties:

a. A slender transverse black line in the middle of the orange band upon the suture between the fourth and fifth segments of the abdomen. Common.
b. The outer edge of the hind wings with a slender straw yellow stripe its whole length;
c. No vestiges of a straw colored stripe on the outer edge of the hind wings.
d. The space between the two inner veins of the hind wings nearly or quite covered with blue-back scales, forming a stripe which divides the transparent disk into two parts. Quite common.

Various remedies have been proposed for protecting the peach trees from this pernicious insect, by the numerous writers who have treated upon this subject in our agricultural and horticultural publications, such as raising a mound of earth around the tree and removing it during the winter season; pouring boiling water around the root; placing around it a bed of cinders, of ashes, of lime, &c.; surrounding it with a collar of mortar; enveloping the root and base of the trunk in matting or in paper. There is much testimony showing that several of these measures are, singly, a sufficient safeguard. Recently an article has been going the rounds of the papers, stating that tanzy set out around peach and other fruit trees would protect them against this and other insects. Attention was said to be directed to this remedy from the fact of a large peach tree, upwards of forty years old, being noticed as having a bed of tanzy growing around its trunk, and the account states that upon setting out this herb around several trees it grew thrifitly, and it appeared that whilst sound trees were preserved by it, unsound ones were renovated. Although some editors have expressed themselves as skeptical with regard to the efficacy of this measure, I am inclined to think it merits a trial. That this herb is repulsive to insects generally I infer from the fact, that on sweeping it for insects only a very few can be obtained, when a similarly dense growth of other weeds is certain of yielding to the collector quite a variety. This at least has been my own experience. One of my correspondents however, thinks he has captured insects as abundantly from this as from other weeds.

The hollow cavity extending down the side of the root of the peach tree which is formed by the peach borer, does not become
obliterated after the worm has left it, but remains often for years afterwards, and forms a favorite abode for those pseudo-insects which are commonly designated sow-bugs or wood-lice. When one of these old burrows of the borer is examined, these little animals will commonly be found huddled together within it, and covering the sides of the cavity as closely as they can stand. And on digging around the roots of a peach tree at any time several of them will commonly be found. As no notice of our American species of these creatures has ever been published, that I am aware, some account of them may appropriately be given in this connection.

These animals are popularly known in different countries under the names of millipedes, wood-lice, hog-lice, slaters or sclaters, and sows. In this section "sow bugs" is the popular name invariably given to them, whilst the name wood-lice would here be understood as designating the wood-tick, *Ixodes Americanus*, and its kindred species, and millipede would be regarded as a synonym of centipede or "thousand-legged worm," a species of *Julus* or *Scolopendra*. The sow-bugs were ranked as insects by the older naturalists, but by most writers at the present day they are grouped with the lobster, crab, craw-fish, horse-hoof, &c., in a distinct class, which is named *Crustacea*, in allusion to the hard shell-like *crustaceous* covering which forms the exterior coat in most of the species. They differ from true insects essentially in their breathing apparatus, which is a kind of gills of a pyramidal form, and made up of thin plates or short threads placed on the under side of the body, commonly at the base of the legs. Insects on the other hand, respire through spiracles or breathing pores, placed in a row along each side of the body, through which, by small pipes, air is admitted into two principal tubes which run parallel to each other, and are extended the whole length of the body. The crustaceans, like insects, have jointed antennæ and legs, and the body composed of a number of segments connected by transverse sutures, but they differ from most insects in being destitute of wings, and in undergoing no metamorphosis, the young, when first hatched, having the same form and parts which belong to it when mature. In this class
the animals under consideration pertain to the order *Isopoda*, i.e. equal-footed, having fourteen pairs of legs of nearly equal size, and to the family *Oniscidae*, which, like other families of this order has four antennae, but here the inner pair of these antennae is quite short and little apparent, consisting at most of only two joints. The typical genus of this family, named *Oniscus*, by Linnaeus, is by modern naturalists restricted to those species in which the external antennae have eight joints, the three last joints being much more slender than the others, and the sutures separating them much less distinct than those between the other joints. I have never met with any American species having this number of joints to the antennae. The general *Porcellio* and *Armadillo* differ from *Oniscus* in having the slender terminal portion of the antennae divided into but two joints instead of three, making the number of joints seven in all.

The genus *Armadillo* is distinguished from *Porcellio*, and from *Oniscus* also, by being destitute of the two conical projecting points or short tail-like processes which we observe at the tip of the abdomen in those genera, and also by having the faculty of rolling itself into a ball, resembling when thus rolled up, a pea or pill, whence they are popularly named pill-millipedes. We have one or more species of these inhabiting the southern part of the State and Long Island, but they do not extend to the neighborhood of my residence, and I have not examined them sufficiently to determine whether they are different from the European species of this genus.

All the animals of this family which have yet been discovered in the central and northern sections of our State pertain to the genus *Porcellio*. These crustaceans are everywhere common about the roots of trees, under logs and stones, in the crevices of the foundation walls of our buildings and in our cellars, and they are particularly numerous under any logs or billets of wood which are left in our chip yards. They occur, in short, in all situations that are damp, cool and dark. Frequently, by night in wet weather, they crawl about the rooms in our dwellings. They are perfectly innocent and harmless, subsisting upon decay-
ing vegetable and animal substances. They afford a dainty bit to domestic fowls, which devour them with avidity, and are always scratching our yards in search of these more than any other article of diet. This is their chief importance in an economical aspect, and being so abundant they form an item of no small value to the poultry breeder, though one of which but little notice is taken. In former times the species of this family were highly reputed for their supposed medicinal virtues, and old books upon the materia medica inform us that when dried and pulverized "they have a faint disagreeable smell, and a somewhat pungent sweetish nauseous taste, and are highly celebrated in suppressions, in all kinds of obstructions of the bowels, in the jaundice, ague, weakness of sight, and a variety of other disorders." And the wine of Millipedes, prepared by crushing these animals, when fresh, and infusing them in "Rhenish wine," is spoken of as "an admirable cleanser of all the viscera, yielding to nothing in the jaundice and obstructions in the kidneys." In the light of modern science we can impute the cures attributed to these creatures only to the effect produced upon the imagination of the patient, and the curative powers of nature, for beyond some slight demulcent qualities, they must be wholly inert, and are now wisely discarded from the pharmacopæias.

Six American species, pertaining to the genus Porcellio are known to me, as follows:

The Smooth Porcellio (P. glaber) has the surface of the body smooth and slightly shining, of a brownish black color, each segment presenting, except along the middle of the back, numerous short whitish lines or oblong dots arranged longitudinally and near the outer margin a whitish spot; under side and legs white or cream yellow; antennæ and projecting apical filamentsunicolor with the body. Length half an inch. This sometimes when captured doubles itself into a ball, similar to the Armadillos, but is incapable of assuming a form so compact and perfectly spherical as the crustaceans of that genus. It is less common than our other species. Young individuals are slightly paler, and a variety which I name con ventus, and which is quite rare, has the oblong dots more or less confluent, forming irregular white spots. This is at once distinguished from all our other species by having the surface perfectly smooth and even, without either elevated points or granules. I had long regarded this as identical with the P. liris of Europe, but specimens of that species, taken in the forest of St. Germain, France, and kindly sent me, with other species of these crustaceans pertaining to western Europe, by my esteemed friend and correspondent, Andrew Murray, W. S., Edinburgh, show it to be different. That species has a dusky spot below the knees which does not ap-
pear in ours. It also has a double row of whitish lines, more or less distinct, towards the outer margin, which in our species is replaced by a single row of whitish spots. Other differences might be specified, but these suffice to show the glaber distinct from its European analogue.

The Unspotted Porcellio (*P. immaculatus*) is dull blackish brown or leaden brown with faint short pale lines and the middle of each segment rough from elevated granules; under side and legs white or lurid. Length 0.30 or less. This is readily discriminated by its uniform brown color unvaried by spots or stripes save the short longitudinal lines which are so faint as scarcely to be perceived and are frequently wholly wanting. It is also our smallest species. It probably occurs throughout the United States, for I met with it in Illinois, and specimens have also been sent me by Mr. Robertson from west of Arkansas.

The Striped Porcellio (*P. vittatus*) is black or leaken blackish with the head deeper black and the under side whitish; the segments are rough from elevated granules with their hind margins smooth; along the middle of the back is a row of white spots and another more distinct near the outer margin; these spots are often confluent, forming continuous stripes. Length 0.35. The same pale short longitudinal lines which are common in other species are more or less perceptible in this also. Young individuals are of a pale or even whitish color but show the usual stripes of a more clear white. It is one of our most common species.

The Mottled Porcellio (*P. Mixtus*) is tawny yellow variously dotted and spotted with black, and with a row of whitish spots which are often confluent into stripes along the middle of the back and near the outer margin; outer edge pale, at least on the angles of the segments; segments rough from elevated black granules, their basal and apical margins smooth. Length 0.40. The elevated granules form round and oblong black dots, and often on each side of the back the intervals between them are white, thus presenting short longitudinal lines of this color, and in a variety (*variega* *us*) these lines are confluent, forming a longitudinal row of white blotches between the dorsal and lateral stripes. Sometimes the stripe on the middle of the back is tawny yellow instead of whitish. This appears to be the most rare of any of our species.

The Pretty Porcellio (*P. tinatus*). Black or blackish, with a stripe each side and the outer margin broadly whitish, and two rows of bright yellow spots along the back; the segments rough with raised granules over their whole surface. Length 0.50. This is our most common species, being thrice as numerous as any other. It occurs in abundance in our cellars, and under stones and billets of wood in the yards about dwellings and barns. It is quite variable in its colors. In young individuals the two rows of spots along the back are pale or whitish. As it increases in size they all gradually change to yellow, or one or two of these spots take on a bright yellow color whilst the rest remain whitish, but this yellow color is successively assumed by the others, and in old individuals the whole become of a vivid ochre yellow. Dots of this same color sometimes appear also upon the narrow posterior or caudal segments prolonging the rows to the tip of the body. The following varieties of this species may be distinguished.
a. d rsalis. The space between the rows of yellow spots of a deeper black color than other parts of the body, forming a black broad stripe along the middle of the back. This stripe is much more obvious in the living specimen than after death.

b. $multiguttatus$. A row of smaller whitish spots along the middle of the back between the yellow ones. Common.

c. $marginatus$. The hind margins of the segments pale or whitish.

d. $lateralis$. The outer fourth part of each segment whitish with a black spot therein.

e. $limbus$. The spots of var. d confluent forming a black stripe with a brown or blackish spot on each side of each segment outside of the stripe.

It is difficult, in short, to find two individuals of this species which are alike in every respect. Still, the species is in all instances readily distinguished by its sculpture, the raised granules occupying the hind margins of the segments although they are less elevated here than upon the disk. In all our other species having the surface granulated, these margins are smooth.

The Rough Porcellio ($P. scaber$, Latreille). Blackish lead-colored often varied with irregular blotches of whitish, the surface rough from numerous elevated points which are arranged in irregular transverse rows. Length 0.45. This is much more rough and the elevated points more acute than in either of the foregoing species. I have not met with it in this State. Specimens sent me from Ohio by Dr. Robert H. Mack, and from Illinois by R. W. Kennicott, differ in no respect that I am able to perceive from European individuals of this species.
THE PLUM.

AFFECTING THE LEAVES.

Wrinkling and distorting the leaves; a black, shining plant-louse, with a pale green abdomen.

The Plum Leaf-louse, *Aphis Prunifoliæ*.

The *Aphis* which infests the under sides of the leaves of our native and also our cultivated plums, curling and distorting them, is one of the most variable species which I have met with pertaining to this family. And so much does it disagree with the accounts which we have of the plum louse of Europe (*Aphis Pruni, Fab.*) that I am constrained, though with some doubt, to record it as a distinct species. The descriptions given of the plum louse are quite discordant. Walker (List of British Museum, p. 989) describes the viviparous winged female as dark gray with nectaries hardly projecting above the surface of the abdomen, whereas, in all the winged individuals of our American insect which have fallen under my observation, the nectaries are cylindric, nearly or quite equalling the tip of the abdomen. It further disagrees with his description, in having the third vein of the fore wings not much further from the second at tip than at base, and the fourth vein strongly instead of slightly curved. Fabricius (Ent. Syst. iv. 213) describes the European insect as having a greenish body, antennæ and legs, with a darker abdominal stripe and point each side of the base, and the margin plaited. Unless this description is very faulty our plum louse must be distinct, it having the thorax and antennæ uniformly black, and no plication on the sides of the abdomen; nor can the large dusky spot be termed a stripe. Since the foregoing was written I notice that M. Amyot (Annals Entom. Soc. 2d series, v. 476,) gives the top of the head and the thorax of the plum aphis as brown and dusted with a white powder. This more strongly
indicates the European species to be distinct from ours, which has a smooth shining thorax not in the least coated with any meal-like matter.

This aphis is much less common than those which pertain to our other fruit trees. Its generation and habits are so similar to those of the Apple plant louse, that a separate account would be little more than a repetition of what has already been related. It only remains, therefore, to give a description of this species in its larva and its perfect states.

The Larva when first hatched is of a white color, the body slightly tinged with green, the feet, tip of the beak and eyes black. As it increases in size three stripes of a deeper green begin to appear and become more distinct and are finally of a bright green color. One of these stripes extends along each side of the thorax and abdomen, and has in it on the thorax a large deep green dot, and upon the abdomen two or three less deeply colored dots; the third stripe is on the middle of the abdomen and is not extended to the thorax. The body has now become of a greenish white color, the legs, nectaries, antennae and beak white, without any tint of green, and somewhat pellucid. The tip of the beak, the ends of the feet and the eyes are black. It is of an oval form, and measures 0.06 in length, by 0.03 in width.

The Winged Plum Leaf-louse is 0.14 long to the tip of its wings. It is black and shining, its abdomen pale green with a black dot on each side of the middle of the two or three anterior segments, a large dusky spot rather behind the middle, and a short dusky band between this and the base; tip of the abdomen acuminate; nectaries cylindric, equalling the tip. The legs are pale yellowish, the tips of the thighs and the feet dusky or black. The antennae are black, their bases pallid. The wings are pellucid, their veins slender, blackish, the rib-vein and base of the third vein pallid; inner margin with a black line extending inwards from the apex of the first vein. The veins are analogous to those of A Pruni in their relative distances, except as already noticed; they, however, vary so much that it is seldom an individual occurs having them normal in both wings. The third vein is as near the second at its apex as at its base, oftener than it is more distant.

The following are some of the varieties which may be met with among individuals of this species:

a. Abdomen above deep black and shining.
b. Abdomen pallid whitish; tips of the thighs and veins of the wings dusky, not black.
c. First fork at tip as far from the tip of the second fork as from the third vein.
d. First fork at tip much farther from the tip of the second fork than from the third vein, the cell between the first fork and third vein narrower at its base.
e. First fork at tip much farther from the tip of the second fork than from the third vein, the cell as broad towards its base as at its apex.
f. The same cell very narrow, not half the width of those each side of it.
g. Only a single fork in the left wing.
h. Only a single fork in the right wing.

The remedies already stated for the apple aphis, will be equally efficacious for this and other species of this family.
5. THE CHERRY.

AFFECTING THE LEAVES.

Black wingless lice with a few winged ones, their wings appearing like white parallel lines each side of the body; covering the under side of the young leaves.

No tree or plant within the sphere of my observation is so constantly infested with Aphides as the garden cherry, the *Prunus Cerasus* of Linnaeus, *Cerasus vulgaris* of modern botanists. Upon other vegetation where these vermin become located they are commonly broken up by their insect enemies after a time and do not again become established upon the same tree. But upon the cherry within a week or two after every individual appears to be destroyed, new colonies are discovered to be planted upon one and another of the young leaves.

This species commences to appear as soon as the leaves begin to put forth in the spring; these first individuals being hatched from eggs which were deposited the preceding autumn. All the individuals which are bred during the spring and summer appear to be females, some of them with wings upon almost every leaf, but most of them without wings. The individuals which are hatched from the eggs resemble the mature wingless females, except that they are smaller and lighter colored, none of the species of this family passing through those remarkable changes in their form which most of the orders of insects undergo. They bring forth their young alive during the continuance of warm weather. These huddle around their parents upon the under surface of the leaves as closely as they can crowd themselves; indeed they often are found two deep, a portion of the colony standing upon the backs of the others, requiring only sufficient space between them to insert their beaks into the leaves to suck their juices. The
numbers which thus make out to stow themselves within a narrow compass are almost incredible. Upon the under surface of a small leaf three-fourths of an inch long and half an inch wide I have counted upon one side only of the mid-vein one hundred and ninety of these lice. Yet this leaf was not more densely covered than many others. The two surfaces of a small leaf but an inch long would therefore furnish ample space to accommodate a thousand of these insects.

As all the leaves are tender and juicy early in the season the aphides multiply rapidly, and in about a month after the first individuals make their appearance, namely, between the 15th and 25th of June, as I find the dates entered several times in my notes taken in different years, some of the trees become literally overrun with these vermin, their black bodies covering not only the under sides of the leaves but also the leaf-stalks, the tender succulent ends of the twigs, and sometimes the green young cherries and their stems; whilst a swarm of flies, wasps and other insects, attracted to them to feast upon their honeydew, keep up a constant buzz and hum around the infested trees during warm sunny days. The leaf of the cherry, however, is of such a tough coriaceous texture that it does not become curled and corrugated like those of most trees when similarly circumstanced. Its edges merely turn backwards or become slightly rolled. The tips of the twigs, however, and the young leaves growing from them, having their juices pumped out and drained by such a multitude of tiny beaks, shrivel and die, looking as though they had been scorched by fire; and the whole tree would soon perish, it is evident, if this severe infliction was protracted. But when the aphides become thus numerous their natural enemies and destroyers are attracted to the tree and multiplied in such numbers as to make the most astonishing havoc among this feeble race of beings. Although single trees in my grounds have been equally infested in some former years, I never knew them all to be overrun with these lice as they were the 25th of June the present year. It was evident if the evil continued the trees could live but a short time. But on examination upon that day I found two or three yellow larvae of the Syrphus flies upon almost every
leaf, whilst the Lady birds or Coccinellidae with their larvæ and Aphis-lions and other destroyers were equally numerous. All fears as to the result were consequently allayed. Still I little anticipated such a rapid and utter extermination of these vermin as actually occurred. A week afterwards upon a careful examination not a living aphis could be found upon the leaves of any of the trees, and the conquerors had already disbanded their forces and had nearly all retired. The empty skins of the slain, adhering to the leaves, with the swollen bodies of others which had been punctured by parasites—for these, too, it appeared, had stepped in to give their progeny a share in the feast—were the only relics of the teeming myriads which had so recently swarmed there. It is by looking at the works of Nature in a definite manner and tracing out her operations specifically and in their minute details that we arrive at some faint conceptions of their magnitude and grandeur, and become vividly impressed with the truth that no other agency than that of a Creator infinite in wisdom and power could have peopled the world which we inhabit with such countless numbers and such an endless variety of objects animate and inanimate, each occupying its appropriate sphere, and all so arranged as to fulfil the objects for which they were called into existence. Has the reader as he has passed a forest ever attempted to conjecture the number of trees which it contained, and has his mind passed onwards to a surmise of the probable number of leaves growing upon each tree, and onwards still to the number of insects which may be drawing their sustenance from each one of these leaves, and still further to the number of minute and infinitesimal parasites which may be subsisting upon each of these insects? Among the cherry trees alluded to above, was a row of seven young ones which had attained a height of about ten feet. By counting the number of leaves upon some of the limbs and the number of limbs upon the tree, I find a small cherry tree of the size above stated is clothed with about seventeen thousand leaves. And at the time alluded to these leaves could not have averaged less than five or six hundred lice upon each, and there was fully a third more occupying the stems and the tips of the twigs. Each of these small trees was therefore stocked with at least twelve millions of these creatures. And yet so vigilant, so
sharp-sighted and voracious were their enemies that at the end of a few days the whole were exterminated.

The aphides being thus swept away from the cherry the latter part of June, almost every year, the trees enjoy a temporary respite. But the insect soon shows itself again. Most of the foliage, however, has by this time become so mature and hardy that their weak beaks appear unable to pierce it. They therefore occupy only the few young and tender leaves at the ends of the twigs and upon the young shoots which start up from the roots. This being the only foliage from which they are able to draw their nourishment they do not again multiply and flourish as at the beginning of the season. But they continue to dwell upon these tender leaves through the summer. On the approach of cold weather males are produced, a stock of eggs is placed about the bases of the buds and in the fissures of the bark for the continuance of their race another year, and their career for the season terminates. The leaves fall from the cherry earlier in autumn than from the apple and peach, and whilst the lice which infest those trees are still abroad in full force those of the cherry have all disappeared.

A small black ant is a constant attendant upon the plant-lice of the cherry tree. It remains with them more constantly and in much greater numbers than the New-York ant which we have described upon a preceding page as accompanying the aphides upon the apple and other trees. Upon one small leaf half a dozen or more of these ants are often present, a part of them industriously occupied in vibrating their antennæ over the backs of the aphides so as to rub them gently. They are constantly engaged in this employment and appear to be much more attentive and faithful nurses than the larger New-York ants. They pertain to the genus Myrmica of Latreille, differing from the true ants in being furnished with stings. These insects however are so small and this implement is so weak that it is wholly incapable of penetrating the human skin. It may be seen in preserved as well as living specimens, resembling a short fine hair protruding from the tip of the abdomen. In addition to this, in place of the single wedge like scale on the peduncle at the base of the
abdomen which we meet with in the true ants, these have two round knot-like swellings; and their thorax is also armed with thorn-like spines, of which there are in most of the species two, situated at its base and projecting backwards.

Altogether the most abundant and annoying species of ant which we have in the State of New York pertains to this genus. It is commonly called the "Little yellow ant" and was named the Troublesome ant (Myrmica molestâ) by Mr. Say in a communication published in the first volume of the Boston Journal of Natural History, page 293, and by a strange oversight the same species is again described upon the succeeding page under the name M. minuta. The neuter or worker of this species is of a honey yellow color with the head and abdomen tinged with brown, the abdomen being broad oval and almost globular. It is but six hundredths of an inch in length, and being so small it is able to penetrate the slightest cracks in boxes or cupboards. It is common in our dwellings, and when an individual finds any saccharine substance the information is communicated to the rest of the colony, and before the housewife is aware of the depredation that is going on, the dish of sweetmeats or other preserved substance becomes covered with them, whilst a procession of individuals going and returning in a particular track may be traced along the shelves and wainscoats, frequently extending through different rooms of the house. I have experienced some difficulty in preserving my collection of insects from this depredator, some box or drawer not perfectly tight being invaded by them ere I am aware of it, almost every season. But by crushing every individual which does not escape into some crevice, and permitting their bodies to remain where they are slain, their comrades take warning and cease to frequent the spot. The vapor of camphor also repels them. Small colonies of this same species are also common in our gardens, throwing up in the paths and beds little hillocks of dirt around the hole which leads to their underground dwelling. It is also common in our pastures and plowed fields, and sometimes does much injury in cornfields, gnawing the blades of corn when they are but a few inches high, for the purpose of drinking the sweet juice which flows from the wounds. It was
on this account much complained of in this vicinity in the spring of 1850, being so numerous and active in some fields as to threaten to cut off every blade of corn in them.

The species which accompanies the plant-lice of the cherry tree does not appear to have been described hitherto, I therefore name it...

The Cherry ant (Myrmica Cerasi). The neuters are 0.14 long, of a dark brown color and slightly translucent, resembling resin; their abdomen is deep black and highly polished, egg-shaped and acutely pointed at its apex, its basal segment covered with minute punctures of an oval form placed longitudinally, and the remaining segments are similarly punctured upon their apical margins; the head, thorax, and anterior sides of the legs are also covered with similar punctures, but more fine; the jaws are reddish-brown and have four teeth of equal size along their inner edge; the antennæ are black, their tips brown and clothed with very fine short hairs, the long basal joint punctured; the legs are black, their bases and the tips of the shanks pale brown, and the last joints of the feet brown; a few gray hairs are scattered over the head and body.

The abdomen of this ant presents a curious appearance. It is flattened upon its upper side and very convex on its under side, thus looking as though it was attached to the thorax in an inverted position. This, however, adapts it to the direction in which it is frequently used—this ant being accustomed to throw its abdomen upward over its head and back, thus presenting its sting to anything which molests it in front. The venom of its sting has a peculiar pungent smell which remains upon the fingers when they crush one of these insects. This venom is ejected copiously and may frequently be seen forming a small clear drop at the end of the sting. And being thus armed these small ants are able to defend themselves against other insects far superior to them in size. It is wonderful to witness this ant conquer the large New-York ant and rob him of his flock of aphides. This may be witnessed by placing two or three of the cherry ants in a vial and introducing into it a leaf of poplar or apple-lice with one of the New-York ants attending them. No sooner does one of these small ants approach, than jealous of the intrusion, he seizes it by its thorax in his powerful jaws, but is instantly informed of the fact that it carries a sting in its tail and knows how to use it. He is as prompt to drop his intended victim as he had been to seize
it, and returns to guarding his flock of aphides, till another of the small ants approaches, which is similarly seized, but with the same result as before. After two or three such encounters he seems to suspect that some mischance has thrown him out of his proper latitude, and he walks around to take a survey of the parts adjacent. He no sooner leaves the flock of lice than one of the small ants hastens to them and rapidly passes its sting around among them, hereby marking them as its own property. From that moment the large ant ceases to notice them, and the small ones gather around and commence rubbing and nursing them as attentively as though they were old acquaintances. It is evidently the pungent fluid of their stings which they throw around among the aphides which render them repulsive to the large ant; and when he first seized one of these small ants it was the suffocating fume of this fluid which induced him to drop his victim so hastily, for their sting is not powerful enough to penetrate the hard horny outer surface of his body.

It is somewhat remarkable that, so closely related to each other as the different kinds of cherry trees are, the aphides which infest one of these kinds of trees do not establish themselves upon the others also. Yet we never see the black aphis of the garden cherry invading any of our native or wild cherry trees, and these appear each to have a species of plant-lice peculiar to them which seldom if ever fix themselves upon the foliage of the other kinds. Thus a species which I described in the Fourth Report of the State Cabinet, page 65, under the name of the cherry-inhabiting aphis (A. Cerasicolens), pertains to our common black cherry. Another species may here be noticed which infests the under sides of the tender apical leaves of the choke cherry, curling their margins downwards and inwards, and changing them to a paler yellowish green color. It may be named and characterised as follows:

The Cherry Leaf Plant-louse (Aphis Cerasifolia), measures 0.08 to the tip of its abdomen, and 0.15 to the end of its wings, which expand 0.26. It is black with a pale green abdomen, which has three dark green dots on each side forward of the nectaries, and above these a row of impressed deep green dots extending backwards past the nectaries with a deep green stripe upon the middle of the back which does not reach to the tip; the sutures are also of a deeper green color; the nectaries reach half way to the tip and are dusky at
least at their ends; the neck and lower side of the head are green; the antennæ are two-thirds of the length of the body, dusky, and in young individuals green at their bases; the beak is short, pale green, its apex blackish; the legs are dull white, the feet and four hind thighs except at their base, blackish; the wings are pellucid, the stigma salt white margined with dusky, more widely so on its inner side, the veins black, the rib-vein white, the second fork very short.

The wingless female are 0.08 long, egg-shaped, pale yellowish green, their abdomens coated with a white meal-like powder except at the sutures and on the medial lines, which last is deeper green, and the legs and antennæ dull white.

The larvae when young are pea green with white antennæ, nectaries and legs. When older a deeper green stripe appears along the middle of the back and a row of deeper green spots each side which are more or less confluent into stripes.

The aphis upon our garden cherry is the species which is named *Aphis Cerasi* by Fabricius. It undoubtedly has been introduced upon this side of the Atlantic with the tree which it infests. M. Fonsecolomb (Annals Ent. Soc. x. 173), speaking of this species in the southern part of France, says it occurs the last of July, and that he has never met with any winged individuals. This would indicate the species to be much more rare than it is with us. Here from the middle of May till the last of September it is the most common of any species of this family. For years when I have wished to investigate any fact in connection with the aphis I have turned to this species, always finding it at hand, and always with two or three winged individuals upon every leaf, in company with larvae, pupæ and wingless females.

The larvae when newly born are about 0.03 long, of a dull white or pale yellow color, with transparent and colorless legs and antennæ. They are of an oblong oval form, with the opposite sides of their bodies parallel and their nectaries shorter than to the tip and transparent or slightly dusky. As they become larger they are broader across the abdomen and deeper yellow, the tips of the antennæ and the feet dusky and the nectaries black. After casting their skins they are dull reddish brown or chestnut colored with black heads, and are much broader across the abdomen, being now shaped like an egg and measuring 0.05 in length. Their legs, antennæ and nectaries are whitish transparent, the last equalling the tip. Others of this same size and form have the thighs, feet, nectaries and tips of the antennæ dusky.

The wingless females are 0.05 long, with very plump broad egg-shaped bodies, which are black and shining, with a slightly projecting tail, the nectaries equalling or even surpassing its tip and of a black color, the antennæ shorter than the body and whitish, their two short basal joints and the apical half black; the beak whitish with a black tip; the legs white with the feet,
tips of the shanks, and commonly the thighs at least of the hind legs, except at their bases, black. The abdomen has an elevated lateral margin, upon the upper side of which is a row of large impressed punctures.

The pupae are 0.06 in length, and like the wingless females in the details of their colors and like the larvae in their form, but are known by having the rudiments of wings which appear like vesicular scales of a white or pale green color on each side of the body rather forward of its middle, and as it approaches maturity the thorax between the fore part of these scales becomes swelled, presenting a blistered-like appearance of a dull reddish yellow color, which sometimes is the color of the body also; its nectaries equal the tip, which has no projecting tail-like appendage. If M. Fonscolomb had confined the pupae which he describes, they would probably have furnished him with winged specimens within twenty-four hours. When the perfect insect crawls out of its pupal skin the head and thorax are dark reddish brown, and the wings are milk white and still folded in the form of small scales, as they are in the pupa; but in a few moments they start out longer and longer, gradually extending and unfolding until they attain their full size, but still retaining their white hue. They soon, however, become transparent, but like all the other aphides when newly hatched, the wings remain dim for several hours, their surface appearing as though it was sprinkled over with dew. The antennæ and legs are also white when it first comes from its pupa state.

The winged females measure 0.05 to the tip of the abdomen, and 0.12 to the ends of the wings, which when spread are 0.20 across; they are deep black and shining, the abdomen nearly twice as broad as the thorax, and egg-shaped, with an acute apex from which projects a short conical tail-like appendage, the nectaries reaching to its base; antennæ black and about three-fourths as long as the body; the beak short, arising between the two fore legs and scarcely reaching the bases of the middle pair, its color black or dusty with the tip black; the legs black with the shanks except at their tips, and the basal half of the thighs white. The wings are transparent, their bases, outer margin and rib-vein white, the remaining veins blackish with their bases pale; the stigma opaque and dull white with its margins black, that on the inner side being wider; the second vein is about a third farther from the first at its tip than at its base; the third is slightly farther from the second at its tip than at its base, and rather farther from the second at its base than this is from the first; the tip of the first fork is but little nearer the tip of the second fork than to that of the third vein, much nearer the tip of the third vein than that is to the second; second fork nearer at tip to the fourth vein than to the first fork, much nearer the fourth vein than this is to the tip of the rib-vein.

Varieties have been observed in which the tip of third vein is equidistant between the first fork and second vein, in which the left wing has but one fork, and in which the right wing has three forks.

The remedies already spoken of in connection with the Apple plant-louse are equally applicable to this species, and the same destroyers which were there described, namely, the Aphis-lions, the Lady-birds or Coccinellide and their larvae, and those of the
Syrphus flies are equally efficient in destroying this and all the other species of plant-lice. In connection with our account of those destroyers, all of which attack the aphides externally, it was stated that there were others which live in the bodies of these insects and thus destroy them. And we come now to present to the reader some information respecting our American species of these insects whose habits are so remarkable.

It was ancienly supposed that an Egyptian quadruped which is named the Ichneumon had the habit of darting down the throat of the crocodile when it was sleeping, and there remaining, feeding upon the entrails of this reptile until it perished. This, however, has long been known to be fabulous. But among insects there is an extensive group, resembling wasps and bees, which possess this very habit which was formerly ascribed to the Ichneumon. They in their larvæ state reside within the bodies of their victims, feeding upon them until they destroy them. They have from this circumstance obtained the name of Ichneumon-flies, and they form the Family Ichneumonide in the Order Hymenoptera. One branch of this family is composed of species which feed internally upon plant lice. It consists of the genus named Aphidius and other genera, of the group which is named Aphidiïdes. These are all exceedingly small insects little exceeding the twentieth of an inch in length, and mostly with black bodies variously adorned with bright tawny yellow and pale sulphur yellow bands and other marks. One of these small Ichneumon-flies, resembling a winged ant in appearance, may occasionally be discovered busily at work among a colony of aphides. With her long thread-like antennæ stretched out in front of her and rapidly vibrating, she approaches an aphis and touches it gently, much like an ant when nursing these creatures. By this slight touch she at once ascertains whether the aphis has been previously visited. If it has not she curves the tip of her abdomen forwards under her, puncturing the body of the aphis and inserting an egg therein. She then passes to another and another. From this egg hatches a minute worm which resides within the aphis, subsisting upon the juices which the latter extracts from the plant. Thus it grows with the growth of the aphis, which furnishes the exact amount
of sustenance which the worm requires for bringing it to maturity. It is singular that the parent ichneumon-fly knows if two eggs were deposited in the aphid the worms from them would die for want of a due supply of food, and that by a mere touch with her horns she is able to ascertain which individuals have already been impregnated. Some of the species of Aphidius are larger than others and their offspring consequently require a larger quantity of food; but each parent has the instinct to select an aphid of such size as will yield the precise amount of sustenance which its young requires.

By the time the worm has attained its growth the aphid becomes so exhausted that it dies. If it should now drop from the leaf to the ground it would be liable to be found and devoured by centipedes or other insects which feed upon the carcases of animals of this class, and thus the worm within it would be destroyed. Nature has therefore so constituted the aphid that in these circumstances it dies without a struggle or a spasm, with its beak inserted and its claws clinging to the surface of the leaf, standing with its antennæ turned backwards and its whole aspect so life-like that in the infancy of my studies I supposed these were one of the varieties natural to the species with which they occurred. Their bodies are remarkably plump and smooth, commonly clay colored or the hue of brown paper, and the aphis-lions and other insects which destroy the aphides appear to pass by those which have these parasites within them. Hence where a leaf or twig has recently been cleared of plant-lice by their enemies, several of these ichneumonized individuals may frequently be found remaining upon it, dead and unmolested. In other instances the whole colony of aphides appears to be exterminated by these parasites alone, the dead swollen bodies of their victims covering the surface of the leaves or twigs as closely as they can stand. The worm remains within the body of the dead aphid during its pupa state. It then cuts a circular hole through the dry hard skin and comes out in its winged and perfect form.

These parasitic insects which feed internally upon the aphides are as efficient in destroying them as the aphis-lions or any other class of their enemies. And it is truly wonderful that whilst
every kind of tree and plant appears to have one or more species of aphid infesting and blighting it; each species of aphid seems to have a particular parasite preying upon and devouring it; for each kind of aphid from which I have reared these insects has furnished a species differing from all the others, and in some instances two species have been obtained from one kind of aphid. The British entomologists enumerate upwards of fifty species of these insects, which is nearly equal to the number of their aphides. They differ from all the other insects of the family to which they pertain, by having commonly a very large triangular stigma to the fore wings, and very few veins, and these commonly end abruptly without reaching the apical or inner margins. Hence there are but few if any closed cells or panes to the wings. One of our species having the wings more fully veined and forming complete cells may be met with accompanying what appears to be an undescribed species of aphid which infests the stalks of lettuce in our gardens. This in my manuscripts is named

The Lettuce-louse Aphidius (A. Lacteaphis). It is deep black with legs tinged with brownish, their bases and knees very slightly paler; the abdomen long obovate, flattened, rather narrower than the thorax, its apex rounded; antennae almost as long as the body, 19-jointed, second joint smallest, globular, third joint longest with a slight constriction in its middle, the succeeding joints successively shorter, the last scarcely longer than the preceding one, long ovate; wings slightly smoky, outer marginal vein and the vein bordering the cell beyond the stigma black, the outer veins brown, stigma dusky white. Length 0.06 to the tip of the abdomen.

One of the prettiest species which I have met with was bred from aphides upon the spotted knot-weed (Polygonum persicaria), and may be named

The Knot-weed Aphidius (Praon Polygonaphis). It is black and shining with a slender elliptical abdomen of a bright sulphur-yellow color tinged with dusky above and at its tip beneath, with broad clear yellow bands at the anterior sutures, its base being narrowed into a short cylindrical pedicle, which with the legs and bases of the antennae are of a bright reddish or beeswax yellow color, the tips of the feet being black; its antennae are inserted on slight broad elevations upon the front of the head and are 17-jointed, the two short basal joints being a third thicker than the following ones, which are equal, cylindric, four times as long as they are thick, the last rather longer than the preceding, its apex abruptly rounded. Length 0.08, wings expand 0.15.

Another species is a common destroyer of a species of aphus which infests the fruit stems of the high cranberry, (Viburnum
Opulus, var. Americanum). These stems are often covered with lice, and the aphidius discovering them passes from one individual to another, dropping an egg into the body of each. The whole colony is thus destroyed by this parasite alone, the dead swollen bodies of its victims remaining upon the stems crowded together as closely as they can stow themselves. I name this species.

The Cranberry Aphidius (Praon Viburnaphis). It is black and shining with the short abdominal pedicel and the anterior legs wax yellow, their feet blackish at the tip, the hind knees yellowish; antennae 15-jointed, the basal joint wider than long, the second nearly globular and slightly thicker than the following ones, the last not larger than the one preceding it; wings hyaline, veins outer margin and stigma black and shining. Length 0.075, wings expand 0.15.

In the following species the veins are fewer in the fore wings and do not form any closed cells in the disk; there is merely a short robust curved vein from the inner angle of the stigma directed towards the apex and ending abruptly, and a vein running obliquely from the mid-vein to the outer margin forward of the stigma. These pertain to the genus Trioxys.

The latter part of June the present year, the willows in this vicinity were overrun, and many trees were almost defoliated by an undescribed species of aphis. But in a short time these insects were all destroyed by their enemies, and the under surface of the leaves were thickly covered with the swollen gray bodies of those which had been killed by parasites. These yielded the following species:

The Willow Aphidius (Trioxys Salicaphis). This is black and shining, with a long elliptical abdomen, of a honey-yellow color at its base gradually passing to black on its posterior part, legs honey-yellow, tips of the feet and of the shanks and sometimes the outer sides of the thighs dusky; feelers honey-yellow; antennae black, two-thirds as long as the body, 13-jointed; the third and following joints nearly equal, cylindrical, thrice as long as wide; stigma dusky. Length with the abdomen in its usual arched posture, 0.06.

The Poplar Aphidius (Trioxys Populaphis) is black and polished, the abdomen long elliptical and much narrower than the thorax, the basal sutures sulphur yellow; legs sulphur yellow, the hind thighs black; antennae nearly as long as the body, 15-jointed, third and following joints about equal, cylindrical, the last joint rather longer and thicker, oval with its apex rounded;
stigma dusky, veins and outer margin of fore wings blackish. Length about 0.07. Hatched from an undescribed aphis infesting the base of the leaves of the Balm of Gilead (*Populus candicans*).

But without dwelling longer upon this interesting group of insects which render us such important services, we close with a notice of a species which destroys the aphis of the garden cherry, and which differs from all the foregoing in its residence when in the-pupa state. As if fearful that the beak and feet of the dead aphis would not hold its swollen body securely to the smooth surface of the cherry leaf, the worm of this species when ready to enter its pupa state perforates the abdomen of the aphis upon its under side, probably as soon as its life is extinct, and spins a cocoon for itself between the leaf and the body of the aphis, the leaf forming the floor of the room for its residence, the abdomen of the aphis forming its roof, and a gray paper-like membrane which it weaves constituting the sides and attaching the body of the aphis securely to the leaf. The walls of its domicil are so thin that the inclosed pupa can sometimes be seen faintly through them, of a bright yellow color.

The Cherry Aphisidus (*Trioxys Cerasaphis*) is black, with its palpi or feelers and legs pale yellowish brown; antennae almost as long as the body, 18-jointed, the third and following joints equal, cylindric, thrice as long as broad, the last elongated ovate; abdomen elliptic, rather narrower and shorter than the thorax, scarcely pedicelled at its base, shining, tinged with brownish; wings pellucid, stigma smoky white. Length 0.07.
6. THE GRAPE-VINE.

AFFECTING THE LEAVES.

A pale green cylindrical worm, nearly half an inch long, with rows of white elevated dots sending out radiating white hairs. Consuming the young leaves, and hiding itself in a hollow ball made of leaves drawn together by cobweb-like threads.

The Gartered or Grape-vine Plume. *Pterophorus periscelidactylus.*

Both in Europe and in this country the leaves of the Grape-vine constitute the favorite food of a number of larvæ as well as of several insects in their perfect state. Dr. Harris has given the history of seven American larvæ, mostly of the larger moths, which feed upon these leaves; and every season, species which have not yet been described are presenting themselves to notice. One of these equally interesting and quite as injurious as either of the species whose history has already been published, I here present to the reader's view.

On a visit to Union Village upon the 16th of June, John T. Masters, Esq., pointed out to me several curious instances of the depredations of insects, in trees along the village streets, and in the vegetation of his garden and yards. One of these insects was then in the midst of its career, consuming the young and tender leaves of his grape vines, which are mostly of the Isabella variety, and forming a retreat for itself by drawing the edges of one, two, or three leaves together, by means of fine silken threads like cobweb, thus making a large roamy cavity, commonly of a globular form, within which the worm appeared to lie in repose during the day time. If the edges of the leaves at any place did not exactly come together, the gap between them was closed by a patch made of silken threads woven together into a membrane resembling bank note paper.
The larva when full grown measures about half an inch in length. It is almost cylindrical, sixteen-footed, of a very pale green color, divided into fourteen segments by rather deep wide transverse constrictions. It has two rows of elevated white spots along the back, and one along each side, each segment having one spot in each row, or four spots in all, and between the spots is a smaller white elevated dot, and another similar dot below the lower spots. From each of these elevated spots and dots white bristles of different lengths stand out in all directions.

Two of these worms which I enclosed in a breeding cage had changed to pupae on the 25th of June, one suspending itself from the gauze top of the cage, and hanging obliquely downwards, the other attaching itself to the glass side of the cage, having first spun several short threads here and there upon the surface of the glass as if to ascertain whether they would adhere to it, and then making a small patch of numerous threads, into which to insert the minute hooks at its tail, whereby to suspend itself. The relics of its larva skin, forming a little lump of fine hairs, remained adhering to the glass, downwards and to one side of the spot where the pupa was attached, being as far off as the length of the insect enabled it to reach. After releasing itself from this skin the pupa had turned to the opposite side, and thus remained hanging stiffly downwards and outwards from the surface of the glass, resembling the dead fragment of a little scraggy twig. It is of a slender conical form obliquely truncated at the head, and has two long compressed horns placed side by side and jutting upwards from the middle of its back. Numerous smaller projecting points and ridges diversify its surface, a particular description of which would occupy a page or two. I therefore limit myself to a recital merely of some of its most prominent marks.

The chrysalis is about 0.35 long and 0.08 in diameter. About the mouth and head are divers raised lines and projecting angular points. The obliquely truncated face is convex or gibbous in the middle, and here commence two elevated carinate or sharp edged ridges which extend backwards nearly parallel with each other to the middle of the back, where they shoot upwards into the compressed horns already spoken of. Their length is equal to half the diameter of the body. Viewed laterally their outline is egg-shaped, with the edges irregularly toothed and the apex drawn out into a long sharp thorn-like point. Forward of these horns the raised lines are more elevated in the middle of each segment, where they present two small tooth-like spines, the anterior one larger, and also two short diverging white bristles which are club shaped or enlarged towards their tips. And on the five abdominal segments next back of the horns and in a line with them is a row of spines, one on each side of each segment near its middle, which spines are inclined forward, and each has a
sight tooth upon its posterior face, and two short diverging club-shaped white bristles. Lower down upon the sides is a row of slight oblong elevations, one on each segment, below which the breathing pores form a row of minute round points, and below these an obtuse angular edge divides the lateral from the under side. On the under side are four longitudinal rows of short white club-shaped bristles, inclined backwards, two bristles at each point. Between the two inner rows of these bristles are two rows of small, elevated, wart-like pimples, which are the scars left by the pro-legs of the larva. The legs, antennæ and wings are enclosed apparently in a common sheath, the forked veins of these last forming faint elevated lines upon the smooth outer part of the sheath. The crysalis varies in color. One of the specimens was bright pale green with a deeper green stripe along the middle of the back, and the long horns and a spot on the crown of the head dull brownish yellow. The other was pale brownish yellow throughout, with a black stripe along its middle.

These insects remained at rest in their pupa state only six and eight days when they hatched moths, pertaining to the genus Pterophorus in the family Alucitidæ and the order Lepidoptera. The moths of this family are distinguished from all others by having their wings singularly cleft into two, three or more long narrow lobes, whence they were termed Fissipennæ or Split-winged moths by Latreille. The lobes are densely ciliated with fine hairs, which, along their inner margins are very long. They thus resemble the feathers of a bird, and have hence in English received the name of Plumes. Their legs are long and slender, and are furnished with long robust spines, of which there is a single one at the tip of the forward shanks, and a pair at the tip of the middle shanks, whilst the hind ones have a pair at their tips and another near the middle.

The names of all the species belonging to this family are compounds ending with the word dactylus, meaning a finger; Linnaeus at first, when but a half a dozen species were known to him (Systema Natura, 10th edition, 1758), having supposed they could all be distinguished merely by the number of the branches of their wings, he hence numbered them two-fingered, five-fingered, &c.; and at a later period, when two or more species were discovered which were alike in the number of their lobes, he named these wing-fingered, square-fingered, &c. The species of which we are speaking, at each pair of spines, has tufts of scales of a tawny yellow color surrounding its hind legs.
like a garter, and as its wings are also banded, the name *periscelidactylus* or Gartered Plume, may appropriately be given to it.

Like other species of this family, this moth is very agile, rapid, and impetuous in its motions, when disturbed, bounding from side to side of the cage in which it is confined, almost with the velocity of lightning, for a moment, and then resting, clinging with its four anterior feet to the top of the cage, its wings spread and its body hanging perpendicularly downwards and swinging to and fro with the wind, with its long hind legs extended as if to protect the sides of the abdomen, and the feet nearly in contact below its tip. It is of a tawny yellow color, the fore wings with three white spots and beyond these two white bands, the fringe white with a blackish spot on the middle and another on the apex of the inner margin.

This moth measures 0.35 to the tip of its abdomen, and its wings expand 0.85. Its antennae are 0.20 long, black, with a row of small white spots on each side running their whole length. The palpi which curve upwards in front of the head to a level with its crown, resembling two little horns, are tawny brown or rust-colored in front, their bases whitish. The thorax is tawny yellow, white at its base. The three first segments of the abdomen have a white spot at their bases and the third has two diverging white stripes which reach its apex. The fourth segment is without spots and of a darker color, its apex blackish. The remaining segments have two parallel white stripes which are faint or obsolete on the base of each segment. Beneath, the abdomen is snowy white with two tawny yellow stripes, or tawny yellow with three rows of large white spots confluent into stripes at the base. Legs white; haunches with a tawny yellow stripe on their outer side; four anterior legs with black stripes; middle shanks with a projecting spine-like tuft of tawny yellow scales above their middle, and encircled at tip by a darker colored tuft; hind shanks with a similar tuft at each pair of spines; spines black beneath and at base, those of the hind shanks black at their tips also. Feet white, apical joints of the four anterior ones, and a band on the apex of each of the other joints tawny-yellow. Fore wings bifid, the cleft reaching almost to their middle, tawny-yellow, with two oblique white bands crossing both their forks, the space between these bands often rusty brown; a transverse white spot at the commencement of the cleft, edged on its inner side with rusty brown; two white spots inside of this, the first towards the outer the second upon the inner margin. Fringe white with a blackish spot on the middle and a larger one at the apex of the inner margin. The inner lobe of the wing between the black spot and its tip notched in the form of a semicircle, with a blackish line upon the base of the fringe in this notch. Hind wings trifid, the anterior cleft reaching their middle, the posterior one extending to the base; rusty brown, tawny yellow at base; hind lobe slender, white and fringed with white with a broad blackish band near its tip.
As this insect completes its transformations so early in the season, it is quite probable there are two generations of it annually, the moths which come out the first of July laying their eggs for another brood of worms at a later period, when the foliage upon the vines will be so dense that they will be much less liable to be noticed. Whether this second generation completes its transformations and the winged moth appears in autumn, and deposits its eggs to be hatched the following spring, or whether it only reaches its pupa state, and thus remains through the winter, future observations must determine. The former, however, appears most probable.

When these worms are neglected and are permitted to feast unharmed upon the foliage of the grape vine, unless they are kept in check by their natural enemies, they will be liable to appear in increased numbers, with each succeeding generation. To prevent them from becoming so multiplied as to injure the vines, they should be carefully sought for in the fore part and middle of the month of June. Wherever one or two leaves are found drawn together by cob-web like threads, forming a lurking place for one of these worms, they should be picked off, gently, that the worm may not be alarmed and escape from his retreat, and thrown into the fire, or crushed beneath the foot. The pupa probably attaches itself to the trellis work of the arbor, most commonly, during the few days that this stage of its life continues, and if any of these happen to be seen, they also should be crushed, or cut asunder with a knife.

This, I believe, is the first American species of this family of moths that has ever been described. In connection with it, therefore, a few other species pertaining to the same genus may be briefly noticed. The genus *Pterophorus* embraces those species of *Alcittiæ* which have the fore wings divided into two and the hind wings into three lobes. The two first of the following species have several points of resemblance to the Gartered Plume, but are much darker colored, and are otherwise clearly distinct from it.

The *Lobe-winged Plume* (*Pterophorus lobidactylus*) is of a blackish color. Its fore wings are ash gray towards their bases, freckled with tawny
brown atoms; towards their tips brownish black. An oblique tawny yellow band ending in white on the outer margin extends across the outer lobe near its base, and on the apex of the outer margin is a white stripe. The fringe along their inner margin is blackish, with a few white hairs forming a small spot at its apex, another white spot forward of it, a larger one towards the base of the inner lobe, and a small one forward of the base of this lobe. The hind wings and their fringes are blackish brown, and the inner lobe near the middle of its inner side sends out some coal black scales forming a spot of this color in the fringe, with a faint ash gray spot immediately forward of it. Beneath, the wings are blackish brown and the anterior pair have three equidistant white streaks on the outer margin, the first rather forward of the middle of the last on the apex; the outer lobe of the hind wings has a white spot near its tip, the inner lobe has a slight white spot on its apex and another on the middle of its inner margin. The antennae are black with white rings, and on their under sides ash grey. The abdomen has white stripes on its under side. The legs are striped alternately with black and white and are banded with a broom-like tuft of black scales at each pair of spines. The spines are white, their bases, under sides, and also the tips of those on the middle shanks, black. The feet are white with a black band on the apex of each joint, and the first joint of the two anterior pairs has a black stripe on its outer side. The wings when spread measure 0.80 from tip to tip. Taken the last of June on bushes in meadows.

The **Slender-lobed Plume** (*P. tenuidactylus*) is of a dark tawny brown color somewhat tinged with coppery red, and on the fore wings has a white spot towards the base of each lobe, and often on the outer lobe has a transverse white streak between the spot and the apex; their fringe is whitish, with a black spot in the middle and larger one at the apex of the inner margin. The hind wings are of the same color, their lobes very slender, the inner one thread-like, white, its fringes white with a broad black band near the tip. The legs are white, striped with black, the feet and hind shanks with black bands. The antennae are white with a slender black ring to each joint. The abdomen is blackish, and at base on the under side silvery white. The wings when extended measure 0.60 across. This species is common upon brakes and other weeds growing in swamps in the middle of July.

The **Ashy Plume** (*P. cineridactylus*) is ash grey throughout, of a darker tint upon the breast. The fore wings are sprinkled with blackish brown atoms, chiefly towards the inner margin and the base. The antennae have a pale brown ring on each joint, which is widely interrupted on the under side. The feet and shanks are whitish and the hind shanks have a faint brownish band at tip and another on the middle. The expanded wings measure 0.75. Taken the fore part of July, in yards around dwellings.

The **Brown-bordered Plume** (*P. marginidactylus*) is tawny brown, the fore wings varied with white cloud-like spots, whereof there is one on the outer margin towards the tip and two on the inner margin, the apical and outer margins and a cloud-like central space extending from the cleft inwards are of a dark brown color; fringe whitish, brown at the outer and inner apical angles, and a small brown spot beyond the middle of the inner margin; under side and hind wings pale tawny brown; legs white, thighs, anterior shanks
and apical third of the hind shanks brownish on their outer sides. Wings expand one inch. Occurs the latter part of June, on weeds along the borders of meadows.

The **Cloudy Plume** (*P. nebulosedactylus*) is milk white, the fore wings clouded with pale tawny brown which color occupies the basal portion and forms two broad bands towards the apex, the last one often faint and not perceptible on the inner lobe; hind wings and their fringe and under side of both pairs of the same pale tawny brown color; abdomen white, sides and stripe on the middle of the back pale tawny brown; legs white. Wings expand one inch. The tawny marks on the fore wings are often obscure in old individuals and sometimes wholly obliterated; still the species may be discriminated by the pale tawny color of the hind wings and the under surface of the fore one contrasting with the whiteness of their upper surface. It is our most common species, occurring from the middle of June till the middle of July, in yards around dwellings, frequently entering opened windows in the evening, being attracted by the light of the lamps.

The **Freckled Plume** (*P. navosidactylus*). Milk white, the fore wings sprinkled with black atoms, which form a black spot at the commencement of the cleft and a dot half way from this to the base; a tawny brown spot on the outer margin near the tip; fringes, under side, hind wings and their fringes ashy brown. Wings expand 0.90. Appears towards the middle of August, in the same situation as the preceding.

The **Chalky Plume** (*P. cretidastylus*) is white, tinged with tawny yellow, and has a small brownish black spot on the fore wings at the cleft and a brown streak on the outer margin slightly beyond the black spot, with traces of a brown oblique band from the one to the other; legs white, four anterior shanks banded each with a broom-like tuft of scales of a pale tawny yellow color at tip and another upon the middle. Expands one inch. Taken the middle of July, in forests.
INFESTING INDIGENOUS FRUIT TREES.

THE HICKORY.

AFFECTING THE TRUNK AND LIMBS.

Boring large holes, lengthwise in the heart-wood; a long, soft, whitish, flattened grub.

The insect which we are now about to consider is one of the largest and finest of our American insects pertaining to the family Cerambycidae or Long-horned beetles. Hitherto it has not been known in what kind of wood the larva of this species occurred. Indeed, the insect itself is rarely met with in collections, having been captured only in the State of Pennsylvania. But from the number of its burrows, which I find in almost every hickory and walnut tree which I have had an opportunity of examining, I am impressed with the belief that this is a much more common insect than has been hitherto supposed, and now that the trees which it frequents are known, it will probably be readily found, over a considerable extent of our country.

Some hickories and bitter walnuts which were split for fuel at my door, gave me opportunities for observing the extensive excavations made by this borer and by the ants next to be noticed, which take up their residence in the burrows which this worm forms. The trees alluded to had stood solitary in the open fields, a situation in which all trees are much more liable to be infested with insects than when growing together in forests. And though to external appearance, these trees were sound and healthy, they
had for many years advanced but little in size, and some of their limbs were annually perishing and falling to the ground. And in every instance where a tree was infested at all, it was badly infested; and the wood of the hickory which is so much esteemed, and for particular uses is so valuable in consequence of its toughness and elasticity, when once attacked by these borers and the ants which succeed them, becomes so extensively perforated and mined as to be worthless for anything except fuel.

The burrow of this worm is excavated in the solid heart wood of our American hickories and walnuts, and is almost two feet in length. It runs longitudinally upwards, increasing in diameter as the worm has increased in size. The annexed cut gives a view of portions of two of these burrows much reduced in size. The hole which the worm bores is somewhat flattish, or more wide than high, and in its largest part it is nearly half an inch in width, and considerably over a quarter of an inch in depth. At its upper extremity it turns obliquely outwards through the sap-wood to the bark. All the lower part of this gallery is filled with a fine powder, of a tan color, the castings of the worm; and some two or three inches below its upper end, in place of these fine castings, it is stuffed for a distance of an inch and a half, or more, with a coarser material, namely, short fibres of wood, which are bent and packed together commonly in a perfectly regular manner. Above these is another layer of the finer castings, the upper end only of the burrow being vacant. And I presume this borer, like that of the apple tree, having completed its burrow and opened it out to the bark, retires backwards a short distance and stuffs the upper end of the cavity with its castings, having the castings above it and the cushion of coarser woody fibres immediately below it during its inactive larva and its pupa state—the coarser fibres being placed there as a bed for the pupa to lie upon—by their elasticity yielding to any elongation or other motion of the slumbering insect, which the fine castings would become too compact and solid, by their settling together, to per-
mit. And when the beetle hatches from its pupa, it tears away the fine powder above it, as it crawls forward, which powder thus falls down upon the cushion of woody fibres, where we meet with it in the evacuated cells—and breaking through the bark, it emerges from the tree.

What is here described seems to be the common habit of most kinds of our timber borers. They complete their burrow by gnawing a passage out to the bark, and then retire backwards a short distance and stuff this upper extremity of the burrow with their castings, that birds, especially the woodpecker, may not be able to detect, by its hollowness, the hole which they have here formed under the bark. But this artifice is not always successful. Mr. P. Reid informs me that he once observed in the trunk of a sapling, a funnel shaped opening which had been dug by a woodpecker, some two inches in depth, at the bottom of which, incased in the wood, was the shell-like relics of a pupa which the bird had devoured, and below was the track by which the worm had come upwards in the wood to this point. At first he was excessively puzzled to account for this phenomenon—by what instinct or other faculty it was possible for a bird to discover a worm which was buried two inches deep in the wood, so as to be able to bore directly inwards to the exact point where it was lying—until it occurred to him that the worm had itself made an opening outwards to the bark, by which to effect its escape after its changes were completed, and had then retreated backwards into the wood again; and the woodpecker by tapping upon the bark had ascertained that there was a cavity beneath, and immediately thereupon opened and enlarged this cavity sufficiently to enable him to reach the insect. What curious habits, what astonishing instances of foresight and intelligence do we daily meet with in studying the works of nature, all concurring to show that these myriads of creatures, each furnished with its peculiar organs, and endowed with such marvellous faculties and instincts, could have been formed no otherwise than by a Creator who is infinite in his attributes.
Except in those cases where its burrow is taken possession of by ants, the exterior opening which is made by this beetle when it crawls out from the tree, soon closes up, leaving a round, ragged scar upon the smooth bark of the bitter walnut and the limbs of the shag-bark walnut, which is visible for many years afterwards. Two of these scars are represented in the annexed cut. By the occurrence of these scars upon the bark we may be able to ascertain what trees have been infested by these and other borers, and will consequently have the wood perforated with holes and unfit for any valuable use.

Neither in Dr. Ratzeburg's celebrated work upon forest insects nor any other author which I have at hand do I find any account of the larvæ of the important genus of wood-boring beetles to which this species pertains. I therefore give a more full and particular description of it.

The larva when full grown is somewhat over an inch in length and a quarter of an inch in diameter across the second or broadest segment. It is a soft, smooth and slightly shining worm of a cream yellow color and a cylindrical form, slightly bulged and broader at the thorax, and is divided into thirteen segments by strongly impressed transverse lines, the sutures of the abdominal segments being more wide than those of the thorax. The nine breathing pores upon each side form elliptical pale yellow spots with a dark chesnut colored line in the centre of each; the first pore is situated in the suture at the base of the second segment, the others are near the middle of the fifth and each of the following segments. A faint darker stripe extends along the middle of the back and is interrupted at the sutures, and upon the top of each segment except the three first and two last is a transverse oval space composed of somewhat irregular rows of small elevated points, one row forming a ring upon the outer margin of the oval space and one or two other rows running transversely across its disk. Beneath, upon these same segments is a similar oval space, but the elevated points are here rather more confused and indistinct. The second segment is longest and the two next are shorter than any of the following ones. The second segment upon its upper side is flat and inclines obliquely downwards and forwards; it is clothed with fine brown hairs, and similar hairs are scattered along the sides of the body; across its middle is an impressed transverse line forming the arc of a large circle, the ends of which line are turned backwards and are continued to the basal margin by a small semicircular impressed line. The anterior part of this segment is of a pale tawny color, with numerous minute punctures; its basal part has coarser punctures and short impressed longitudinal lines which
are more or less confluent with each other. The head is retractile within and but half as broad as the second segment, and is coal black except at its base, the black being edged posteriorly with chestnut brown. The upper lip or labrum is transverse oval, rather broader towards its base, honey yellow, and covered with short yellow hairs which incline forwards. The upper jaws or mandibles are robust, with an angular obtuse tooth-like projection near the middle of their inner sides, their tips being simple and rather blunt. The antennæ are minute conical two-jointed points projecting outwards at the base of the mandibles and distant from the base of the head. The feelers are thrice the size of the antennæ, conical, three-jointed and of a chestnut brown color; the lobe of the lower jaws or maxillæ projects at the inner base of the feelers and is more than half their length and clothed with short dense pubescence. The feelers of the lower lip or the labial palpi are minute but perceptible. The throat is whitish, the suture at the base of the oral organs black edged posteriorly with chestnut brown. The apical segment of the body is divided into two parts by a transverse impressed line, and might, as in many other larvae, be counted as two segments, the last one being much more narrow and short in this insect.

The celebrated Swedish entomologist, Baron De Geer, long ago published a description and figure of this beetle in the fifth volume of his Memoires on Insects, page 113, under the name of Cerambyx tigrinus, or the Tiger Cerambyx, a name suggested perhaps from its size and colors. It has lately been described by Rev. D. Zeigier, and by Prof. Haldeman, under the name of Monohammus tomentosus, or the Wooly Cerambyx, which name, however, must give place to that which was previously bestowed. Some of the descriptions that have been published have evidently been drawn from imperfect specimens, denuded of their pubescence in places.

The medium length of this beetle is about one inch, though, like most other Long horned beetles the two sexes differ much in size, the males being often only 0.65, whilst the females are 1.15. The ground color is brown, sometimes tinged with reddish or on the elytra with pale yellow; and the surface is covered beneath and for the most part above with fine short appressed hairs of an ashy or a tawny-yellowish white color. The head is punctured, at least, on its summit, and has an impressed line in its middle. The mouth is of a honey-yellow color above and beneath, the upper lip being hairy and blackish except at its anterior edge, and the mandibles are deep black, their bases brown. In the notch of the eyes is an elevation on which the antennæ are inserted. These are rather shorter than the body, eleven-jointed, the second joint very short and more broad than long; the basal joint is double the thickness and but half the length of the third joint, which, with those that succeed it are about equal in length and gradually diminish in thickness. The two basal joints are brown, all the others whitish or pale yellow and stained with brown at their tips. The thorax is everywhere covered with short appressed hairs, which are more dense beneath, and has on each side in the middle, a conical erect spine rounded at its apex. The scutel is brown, its apical half covered with whitish or light yellow hairs. The elytra are covered with simi-
lar appressed hairs on the middle and posterior parts, leaving a broad brown band behind the middle (which is interrupted at the suture and sometimes does not attain the outer margin), and at the base a similarly colored band, which, posteriorly, is gradually shaded and without any definite edge. The anterior half of the elytra is punctured, the punctures black and becoming more dense and coarse towards and at the base, where they open backwards and have their anterior edges elevated into little callous points, rendering the surface rough and shagreened, each puncture yielding a short black bristle. The hooks of the feet are pale yellow.

Mining long narrow passages in the trunk and limbs, and staining the wood light brown; a longish, black, shining ant, its abdomen with equidistant transverse rows of fine bristles, two rows upon each segment.

The Walnut Ant. *Formica Caryx*.

The fact is reported in the Albany Cultivator (1853, page 116) by C. B. Brown, of Damascus, Pa., that a house that was overrun with ants had been rid of this pest by placing a piece of shag-bark hickory wood upon a shelf in the pantry where these vermin appeared to be the thickest. The ants gathered upon this billet of wood in the course of an hour or two in such numbers as literally to cover it, whereupon they were brushed and shaken off into the fire, and the stick was replaced to collect another swarm; and in this mode the house was soon entirely cleared of them. No reason is assigned for the ants being thus attracted by this wood, but there can be no doubt that the sweet syrup-like sap of the hickory was more congenial to their taste than any other food within their reach, and was the cause of their collecting together in the manner stated. And it is quite probable that a recently cut piece of hickory wood may prove in other cases one of the best traps for these pests, which occasionally become quite an annoyance in our dwellings. Hickory and walnut trees whilst growing are also a favorite resort of these insects, and we have one American species which appears to be a constant resident upon them, to the great injury of the trees. In the winter season I have repeatedly met with little clusters of this ant, when searching for insects under the loose scales of bark of the hickory, and on coming recently to work up some of these trees for fuel, these same ants were found in the wood, occupying most of the galleries which the tiger cerambyx had bored therein, which gal-
Jeries they had extended and connected together by their own mining labors. These passages were extended everywhere through the wood of the trunk and branches, often running out even into the small limbs less than three inches in diameter.

Our other wood-eating or carpenter ants (*Formica Pennsylvanica ligniperda*, &c.) seem to reside only in the dead wood of the interior of trees and in the timbers of our buildings, but this species is of a more pernicious character, attacking the sound wood of living trees. Its burrows are long narrow passages, never widened into those spacious apartments which our other carpenter ants excavate. Sometimes portions of dead wood in the heart of the tree and at its butt will be met with, mined in a different manner, large chambers and galleries being excavated which are separated by partitions no thicker than pasteboard; and not unfrequently a few dead individuals of the Pennsylvania ant, which is a larger species, may be found lying in these galleries, showing that these apartments were constructed by them and not by the walnut ant. And it appears to be a common occurrence for a colony of the Pennsylvania ants to establish themselves in the dead wood of the walnut, and to be afterwards so encroached upon by the more numerous and thriving colony of the walnut ants that they abandon or are driven from the tree, for I have never met with any living individuals of this species in these cavities, which had manifestly at some previous period been excavated by them.

It has been remarked of one of the European ants (*Formica fuliginosa*) that the sides of its burrows are always of a black color, and our American ant has a similar habit. It paints the walls of its rooms, as we may say, of a butternut or snuff brown color. Huber could not satisfy himself whether the black color of the wood occupied by the European ant alluded to was caused by its being exposed to the air, by some vapor emanating from the bodies of the ants, or by its being acted upon and decomposed by the formic acid which ants secrete. To us it appears that the last of these is probably the cause, for with our species this discoloration is not confined to the surface of the burrow, but penetrates through the wood surrounding it on all sides, to the dis-
tance of an inch or more. This discoloration will be observed in every part of the trunk and limbs of the walnut tree, wherever the burrows of these ants occur. And it seems quite probable that the ant by thus saturating the wood with acid, hastens its decay, in order to adapt it for being more easily mined. If we are correct in this supposition, this curious faculty which our walnut ant possesses of softening the wood in order that it may be able to gnaw and excavate it more readily, renders this species much more injurious than it otherwise would be.

It is commonly stated of the insects of this family that males and females are developed only in the summer, and that it is the neuters alone that are to be found at other seasons of the year; but of this species I meet with all three of the sexes, in a torpid state in their burrows in the winter season. Those parts of the burrows where the ants were present had their walls quite wet, probably from the perspiration given off from their bodies. And nestling in this wet surface a few larvae of the ants were also met with.

These larvae were very small footless grubs, measuring from 0.03 to 0.08 in length, the largest individuals being about 0.03 in diameter. They are of a cylindrical form, but always lie with the body doubled together in the form of the letter U, or in the larger individuals with the head bent downwards against the breast. They are of a white color, shining and semipellucid, with a blackish cloud in the center of the body from alimentary matter in the viscera. The surface is covered with numerous shortish white hairs, and the segments are marked by transverse impressed lines, which are much more obvious in the large than in the small individuals. No projecting jaws can be discerned at the mouth.

Upon the wet surface of the walls of the cavities occupied by these ants, extremely minute ticks may also be met with, numerous in particular places, and of a pale red color, bearing some resemblance to a minute Coccinella or Lady-bird. These, it is probable, are parasites living upon the ants. They are similar in their form, texture, &c., to the common Beetle-tick (Gamasus coleoptratorum, Lin.), but the hard shining plate covering their back consists of one piece only. They consequently pertain to the genus Unopoda of Latrielle, and the species may appropriately be named Formica, or the Ant-tick. Of the species figured in Baron Walckenaer's Atlas of Apterous Insects, it bears the closest
resemblance to that of Unopodo vegetans (Pl. 34, fig. 6), a species which is quite common upon several of our American beetles.

The Ant-tick measures from 0.010 to 0.015. It is of a cherry red color, younger individuals being translucent and pale reddish; it is shining, with translucent legs clothed with short hairs. It is of a circular form, very slightly longer than wide, flattened, and commonly presents a translucent margin. The legs are shortish, taper gradually, and the feet are not half the thickness of the shanks. The anterior legs have not the slender feet of the three other pairs, but are antennae-like, and have at their tips several short coarsish hairs and a single bristle slightly longer than these hairs. The palpi or feelers rarely project beyond the anterior margin, and their tips are also clothed with short hairs.

This ant appears to be a distinct species from those which have been heretofore described, and I therefore propose for it a name in allusion to the situation in which it occurs. It may be distinguished by the segments of its abdomen being glabrous and polished at their bases and minutely punctured on their posterior half, with two transverse rows of fine erect bristles, one in the middle the other at the tip of each segment. The Silky ant (Formica subsericea) described by Mr. Say in the Boston Journal of Natural History (vol. i, p. 289), is closely related to this species, but is destitute of punctures on the abdominal segments.

The males of this species measure 0.30 to the tip of the abdomen which is about 0.08 in diameter, 0.32 to the tip of the closed wings, and the wings spread 0.45. They are black and shining. The head is nearly globular, and there are, as usual in this sex, three distinct ocelli or little eyes upon the crown, and from the anterior one of these a fine impressed line runs forward to the face. The face is rough and unequal, with impressed punctures, from each of which arises a short hair. The tips of the jaws are tinged with brown; the upper lip is blackish-brown or sometimes cinnamon-yellow; the feelers are long slender and thread-like, and are clothed with fine short hairs; the antennae are long and slender, of equal thickness, their tips with an ash grey reflection. The thorax is slightly broader than the head, oval, smooth, and without punctures or hairs. The abdomen is somewhat wider than the thorax, and composed of seven segments, of which the basal one is contracted as usual, forming a slender pedicel, with an erect hump or scale on the middle of its upper side, which, viewed laterally, is of a wedge-shaped form, short and thick, and bears a few short hairs; its summit is cut off transversely and is distinctly notched in its middle. The remaining segments form a regular oval mass, rounded at base pointed at tip. The basal third or half of each segment is glabrous and shining, the remainder is minutely punctulated and clothed with fine short hairs, scarcely perceptible, whilst on each segment are two transverse rows of fine bristles which are sometimes interrupted along the middle of the back, one row on the posterior margin, the other near the middle, these bristles arising from rows of equidistant punctures. At the tip
protrude three short thread-like processes, of which the outer ones are slightly longer. The feet are long, slender, and tinged more or less with brownish towards their tips. The single spur at the tip of each of the shanks is of a pale yellow color. The wings are transparent and glassy but not clear, the surface being minutely granular as usual in this genus and strongly iridescent. Their veins are honey-yellow and have a waxy appearance; those which traverse the posterior portion of the wings are hyaline and colorless, and become abortive at their tips in the margin.

The females differ from the males in being of a much larger size, measuring almost half an inch to the tips of the wings, which, when spread, are three-fourths of an inch across. The head approaches to a square form, and is broader than the thorax; the upper jaws are more robust, and of a dark reddish brown color; both the head and thorax are minutely punctured and pubescent; the abdomen is proportionally larger and less narrowed towards each extremity, is but six-jointed, and has no projecting processes at its tip, the scale on the peduncle at its base is very slightly and sometimes not at all notched, and the two transverse rows of short bristles on each segment are much more distinct; the feet and sometimes the shanks are of a dark reddish brown color; and in the wings the vein which bounds the inner side of the cubital cell arises outside of the middle of the transverse medial vein, instead of in the middle, which is the point where it originates in the males. Some females are met with which have gnawed off their wings and cast them away, this being a common habit among ants of this sex. These wingless females may be distinguished from the largest sized workers by being of a still larger size, and the cicatrices of the cast off wings are very obvious on the sides of the thorax.

The neuters or workers are always destitute of wings, and are generally smaller than the males, varying in length from 0.20 to 0.33. In all other respects they resemble the females, except that they have no ocelli and a very narrow thorax plainly divided into three segments by impressed sutures. The scale of the abdominal pedicle is almost circular, being a little higher than it is wide, and is regularly rounded above, without being cut off as in the female, or notched as in the male; it is convex on both sides, but with a slight concavity in the middle of its posterior face.

The following varieties may be found among these ants:

a. Female. Scale of the abdominal pedicle not at all notched.

b. Female. Middle transverse sutures of the abdomen strongly constricted.

c. Female. Middle sutures of the abdomen pale, forming a transverse band.

e. Neuter. Two basal sutures of the abdomen pale yellowish brown.

f. Neuter. Antennae and legs dark reddish brown, instead of black. These are probably young individuals, recently hatched.

Upon the twigs and leaf-stalks hollow green bullet-like galls of a leathery texture, their inner surface covered with minute white and yellow lice; the gall afterwards turning black, opening and becoming cup-shaped.

The Hickory-gall Aphis. *Pemphigus Caryacaulis.*

A disease of the young limbs of the hickory, which will remind one of the well known black knots upon the cherry, is of such
frequent occurrence that it has probably been observed by many of my readers. About fifteen years ago I first noticed a tree upon my farm which was severely affected by this disease, and which has continued to suffer from it annually down to the present time. Within two rods of this tree are two others which have remained wholly unaffected, and have regularly produced a fair yield of fruit, whilst not a single nut has been matured upon the diseased tree. The excrescences upon the limbs at the time of gathering the fruit in autumn, which was the only time I had heretofore noticed them, are black, ragged, leathery and cup-shaped, having a marked resemblance to some of the species of fungi of the genera *Peziza, Cenangium*, and their kindred. But whether they really were of a vegetable nature or were the work of insects I was unable to determine from their appearance at that period of the year. Mr. T. B. Ashton having recently informed me that he had always met with the Elegant weevil (*Conotrachelus elegans* Say), a species most nearly related to the Plum weevil (*C. Nenuphar* Herbst), exclusively upon these diseased hickory trees, although I had myself captured it upon butternut, hazlenut and other foliage, I resolved the present year to investigate these excrescences at the commencement of their growth, and ascertain their cause, not knowing but it might throw some light upon the mooted origin of the black knots upon the plum and cherry. I have been successful in this examination, and have ascertained that although these excrescences are of insect origin, the weevil alluded to has no direct connection with them, and if it really is more common upon these diseased walnut trees than elsewhere, as Mr. Ashton's observations indicate, it is only because, like many other insects, it prefers diseased and weakened vegetation to that which is healthy and of rank vigorous growth.

The insect which forms these excrescences is a female plant-louse, and her proceedings and the effect which they produce is truly wonderful. Hatching probably from eggs that were laid the preceding autumn, each individual, early in the season, stations herself at a particular spot, either upon the mid vein of one of the leaflets, upon the leaf-stalk, or still further down, upon the green succulent twig which is the growth of the present year.
This last is most frequently the situation which she prefers. Puncturing the part with her beak she causes a profusion of sap to flow from the wound. This evaporating and coagulating becomes organized vegetable matter, which gradually grows upward into a wall around her, and as she continues to puncture it its growth continues until it finally closes together over her, and shuts her into a cavity having only sufficient room for her to turn freely around in it. Yet within this cell in which she is thus closely imprisoned, she is to give birth to several hundreds of young. To make the cavity sufficiently roomy for them she continues to puncture its walls upon every side, thus causing them to expand. Her young also, as soon as they are born, fix themselves to the inner surface of the gall, inserting their beaks therein to feed upon the vegetable juices, thus adding to the irritation and expediting the growth of their domicil. Thus as they increase in number and size the gall increases, so as to furnish the amount of room which each requires, without any vacant space between, the whole surface being covered with these young lice.

It is thus that these excrescences are produced. They are of a globular form and of different sizes, from that of a pea to an ounce ball, and are attached to the side of the stem the whole length of their base, often causing a bend or distortion of the stem, especially when two or three are contiguous and confluent, as they frequently are. The walls of the gall are about the tenth of an inch in thickness, and of a succulent fleshy texture, white upon the inside and green on the outside at first, but soon becoming discolored with black, which spreads until the whole is of this color. The hollow inside has its surface covered with minute smooth shining lice of different ages and sizes, so that it resembles the geode of a mineral, the surface of which is lined with a multitude of minute crystals, whose sparkling points are everywhere glittering in the light. Numerous dusky specks are also observed among the lice. These are the cast skins of the lice, all of which moult as they increase in size, their original skins becoming too small to contain them, and being of too firm a texture to expand with the growth of the insect.

In addition to the dusky cast skins which have been mentioned, in many of the galls numerous round black grains occur. These
are the excrement of a larva which lives in the walls of the gall, mining cylindrical channels in it. This larva is about the tenth of an inch long, shining watery whitish, with a pale yellow cloud in the middle of its body, from visceral matter in the intestines, and a flattened polished pale tawny head with the jaws appearing like two brown dots on its anterior edge. It has no feet, and to crawl forward it elongates itself and with its jaws grasps the spongy side of its burrow, and then contracting, it draws its body up towards its head. By this singular mode of progression it moves along with rapidity in its burrow, but when placed upon paper it strives in vain to lay hold of the smooth surface with its jaws, and is incapable of advancing. It is quite probable that this worm is the larva of the Elegant weevil above spoken of.

It would be supposed that the lice which occupy these galls, being wholly shut in as they are by a thick wall upon every side, would be secure from the assaults of the numerous and inveterate enemies of the aphides which have been noticed in the preceding pages. But in one instance, four worms, which from their appearance and motions I supposed to be the larvæ of a Syrphus-fly, were met with in one of these galls. They were the tenth of an inch long, of an elongated oval form, more pointed anteriorly, and of a pale rose-red color, with a broad yellow stripe in the middle from inclosed visceral matter.

Though I have not been able to find winged individuals of the insect which forms the galls upon the hickory twigs, it is so like the Pemphigus bursarius of Europe in its habits, a species which forms similar galls upon the leaf-stalks of the poplar, that I entertain no doubt our insect is co-generic with that species. We have still another species which is closely related to these in its habits. It is the grape leaf louse (Pemphigus Vitifoliiæ) of my manuscripts, and forms small globular galls about the size of a pea, upon the margin of the leaves of the grape vine. They are of a red or pale yellow color, and their surface is somewhat uneven and woolly. They are met with the fore part of June, having only the wingless females inclosed within them at that time. These closely resemble the same sex in the species under consideration.
The larvae which occur in the walnut galls are of different sizes, the largest being 0.025 long, of an oval form and a light yellow or yellowish green color, with dusky legs and antennae. Younger individuals are white, shining, and somewhat hyaline, with pellucid white legs. The antennae are short and robust, consisting of two short thick basal joints and a longer terminal one of a conical form, and giving off a short bristle on one side near the tip. The legs are also short and thick.

The wingless females, of which one is found in each gall, she being the parent of the multitude of larvae around her, measures 0.04 in length, or somewhat more. She is of a plump egg-shaped form, narrower posteriorly and flattened on the under side. The segments of the abdomen are much longer than those of the thorax, and are separated by impressed lines. The legs are short, scarcely projecting beyond the outer margin, and with the antennae are blackish, the general color of the body being yellow, often of a dull or dirty tinge.

Trees are much disfigured by the exeresences upon the ends of the limbs which this louse produces, which show conspicuously after the leaves have fallen. It requires two or three years for them to decay and become obliterated, and in the mean time a new stock is annually added, for where these insects obtain a lodgment they continue year after year, stunting the tree in its growth and blasting its fruit. Though there sometimes grows upon such trees nuts which are full sized and appear externally to be fair and well formed, they are found upon cracking to be destitute of meats.

It is quite probable that these insects may be expelled from the trees which they infest by rubbing the ends of the limbs with soft soap soon after the leaves put forth. Or a month afterwards, when the galls are green and filled with lice, by cutting off and burning all the twigs and leaf-stalks on which these galls are growing, the tree will probably be relieved from a renewed attack the following year.

AFFECTING THE LEAVES.

Consuming the leaves; white caterpillars with eight tufts of converging black hairs on the back and towards each end a pencil of long black ones on each side.

The Hickory tussock-moth. Lophocampa Caryae. Harris.

Of the caterpillars of our State, one which will be most apt to be observed on account of its clean neat appearance, and the re-
gular arrangement of the colors to the tufts and long pencils of hairs with which it is clothed, is the hickory tussock-moth. And any one who is desirous of rearing an insect in order to inspect the remarkable changes which it undergoes as it grows up to its perfect state will succeed better with this, probably, than with any other species. One or more of the caterpillars placed in a tumbler or a box, and supplied with fresh leaves two or three times a week, will require no further care. So hardy are they that they will even feed upon leaves which are dry and brittle, and their cocoons may be kept in a warm stove-room during the winter without the inclosed insect withering from the dryness of the atmosphere.

Although the hickory and walnut appear to be the trees of which these caterpillars are most fond they are by no means limited to them. Dr. Harris records his meeting with them upon the ash and elm, and I have found colonies of the young worms upon the butternut, the sumach and the slippery elm. They hatch from the eggs early in July, and whilst young they remain together, a hundred or more in a company, all being probably from one parent. They occupy a leaf near the end of a limb, forming for their residence a slight covering or tent made of the fine silken threads which they spin. If the limb is jarred most of them let themselves down from it by means of their threads, some dropping to the ground, others remaining suspended in the air at different heights. They have their regular periods for feeding and repose. They consume the whole of the leaves where they reside, leaving only the mid-veins and some small fragments of the green tissue remaining. The annexed figure is taken from a leaf partly consumed by them. If when engaged in feeding a fly or other insect annoys it, or even if the rays of the sun shining through the foliage happen to fall directly upon it, it moves away to another place; and if when thus crawling away its hairs touch
those of one of its comrades, he too stops feeding and moves at least a short distance aside. When ready to cast its skin it fixes itself to the surface of the leaf by means of the minute sharp hooks of its feet; its exterior skin separates, and through a cleft at its anterior end the worm crawls from it, leaving the empty skin with its white and black tufts and pencils of hairs adhering to the leaf, with the legs, particularly the pair at the extremity of the body spread widely apart. They cast their skins three times in attaining their growth. The accompanying cut gives a view of these cast skins at each of the moultings, and shows the increase which takes place in the size of the caterpillar during the intervals. With each change of its skin a very perceptible alteration takes place in the appearance of the caterpillar. Its hairs, which at first are so fine as to be scarcely noticed by the naked eye, become so coarse and numerous at last as to hide from view the skin and the dots with which it is ornamented.

The Larva or caterpillar is sixteen footed, cylindrical, clean, clear white, with numerous black dots, and clothed with tufts and longer pencils of hairs, which are beautifully branched or bearded, and of a white color, interspersed with other tufts and pencils which are black, the longest of the pencils being half as long as the body. The accompanying figures present a dorsal and lateral view of the young, and a dorsal view of the mature caterpillar, the last much contracted in its length, being taken from a dried cabinet specimen. On the anterior segments, the black dots are arranged in a transverse row; on each of the others there are four black dots above, at the angles of an imaginary square, the anterior two being nearer each other, and upon each side is a row of three equidistant dots, the upper one larger, with three minute black dots slightly below it, and a short black stripe back of it. From each of these dots arises a tuft of white or black hairs, there being a row of eight black tufts along the back, the ends of which converge in the form of a steep roof, and two pencils of long black hairs on the fourth and also on the tenth segments. Some long white hairs overhang the head, which is black, smooth and shining; the bases of the feelers and of the jaws and upper lip being white. The neck has a large crescent-shaped spot above, placed transversely, and two small black dots on each side, with two larger ones anteriorly below these. The legs are black, the prolegs white, with a large black spot on their outer sides.

The caterpillars attain their full size in about two months, and are then nearly an inch and a half in length. Before they are half grown they scatter themselves and thenceforth live apart and

[Assem. No. 215.] 11
solitary. The state of the atmosphere influences them somewhat as to the time of spinning their cocoons. Ten worms which I reared in a cage together from their infancy, after a period of severe drouth, on the occurrence of a rainy day the second of September, spun their cocoons simultaneously, all save one which performed this labor ten days earlier. When ready to form its cocoon the caterpillar crawls into some secure cavity, in the crevices of a wall or beneath a stone, to which the cocoon is very slightly attached. From this the winged moth is given out the following spring, though when reared in a dry room I have known individuals to come forth in their winged state the latter part of October and in November. These moths pertain to the family ARCTIÆ or the Tiger-moths. They cannot be referred to any of the genera defined by the European naturalists, and Dr. Harris (New England Insects, p. 279) has therefore constructed for them a genus which he names Lophocampa, a word meaning crested caterpillar. He indicates four species pertaining to this genus, and the caterpillars of two additional species are known to me.

The Cocoons of the hickory tussock-moth are of a regular oval form, nearly an inch long and over a half inch broad, of an ash gray color, composed exteriorly of the short stiff hairs of the caterpillars, woven loosely together and with their points standing in all directions, so that it is impossible to touch one of these cocoons without having the skin filled with these hairs, resembling cowlase and producing the same irritation of the skin which that substance causes. The pencils of long black hairs of the caterpillar are separated and drawn in among the others so skilfully that the eye is seldom able to discern their color. The whole are held together by a thin clothlike fabric formed of white silken threads matted closely together which lines the cocoon upon its inner side. Its texture is so slight that when the moth is ready to leave the cocoon, by merely crowding its head forward it ruptures it at one end, and forms a round orifice through which it makes its exit, elongating the cocoon slightly hereby, at this end, as represented in the accompanying figure.

The CHRYSALIS or pupa lies in the cocoon with the black head and other relics of the larva at its pointed end. It is 0.70 long by 0.30 in diameter, of a pale chestnut color, its sutures marked by slender black impressed lines, and the breathing pores forming a row of seven oval black dots along each side. Its surface is smooth, without those rows of little spines which we see in the pupa of the peach borer and several other moths, and the empty shell remains within the cocoon after the moth is disclosed. The figure presents a dorsal view of the sutures, breathing pores, &c., but is unduly contracted on the anterior half, the width here being the same as across the middle.
The winged Motth measures from 0.65 to 0.80 in length to the tip of its abdomen and the expanded wings are 1.70 to 2.20 across, the females being larger than the males. It is of a pale ochre yellow color, hairy above, the abdomen on its under side covered with scales of a whitish and somewhat silvery appearance, with a row of tawny spots in the middle in the female; a band in front between the eyes, two dots on the neck and the inner edge of the shoulder covers tawny; eyes spotted with black; antennae three-fourths the length of the body, tawny yellow, with two rows of teeth along their inner sides, which are short in the female, and in the male long and comb-like. Fore wings long and narrow, somewhat pointed at their ends, nankin yellow freckled with tawny yellow atoms, and with the veins and a ring surrounding each of the spots tawny yellow; spots mostly round or oval, white and somewhat transparent, arranged in three rows extending obliquely across the wings parallel with the hind margin, each row having one spot between each of the veins, the number being eight in the two hindmost rows and six in the forward one; the third spot in the middle row the largest; the forward row situated half way between the middle one and the base, with two additional spots behind and two forward of it, and a large irregular spot upon the inner margin at its base; under side similarly colored and marked. Hind wings whitish, thin and semi-transparent, without spots. The spiral tongue is almost as long as the antennae. The feelers project horizontally forward and are clothed with hairs similar to those upon the head, their apical joint being covered with scales only.

On the under surface of the leaves, sucking their juices; small flattish pale yellow lice, their antennae with black rings.

The Little Hickory Aphid. *Aphis Caryella.*

The extensive genus *Aphis,* several species of which we have had occasion to treat of in the preceding pages, is well characterised by having three oblique veins crossing the disk of the fore wings, the third one of which is twice forked, and seven-jointed antennae. The species, however, which are embraced in this genus admit of being divided into smaller groups. This has been shown in a very able manner by M. Kaltenbach, whose arrangement is reproduced by M. Amyot in his valuable review of these insects in the Annals of the Entomological Society of France, 2d series, v. 437—480. But none of the sections which these authors define appear to present differences of sufficient value to warrant their elevation to the rank of genera, although Mr. Curtis in his British Entomology has proposed to separate those having the antennae shorter than the body, and the beak arising from the lower part of the head instead of between the base of the fore
legs into a distinct genus under the name Cinara. But we have certain American species inhabiting the leaves of the hickory, oak, and high cranberry, which differ so much both in their form and habits from the general character of these insects, that they will probably be regarded as entitled to the rank of an independent genus. Having the last joint of the antennae shorter than that which precedes it, they would be included in the last section of M. Amyot's arrangement, the type of which is the Aphid Tiliae. But, from specimens of this species received from Dr. Signoret of Paris, and the descriptions given of it by M. Fonscolomb and others, our American insects differ in several important points. Their wings are not elevated in the usual steeply inclined manner but are laid flat upon the back in a horizontal direction; their bodies are strongly depressed; their nectaries are merely pores without any perceptible elevation, though in one instance, examined when a globule of honey dew was protruding, the end of an exceedingly short cylindrical tube could be discovered with a lens, which tube appeared to be retracted and became imperceptible soon after. Their secretion of honey dew appears to be quite limited as compared with other aphides, nor do they extract a sufficient amount of juices from the leaves to cause any very perceptible distention of their flattened abdomens. They do not remain fixed to the leaves with their beaks inserted therein, but are wandering over its surface much of the time, nor do they live in societies like other aphides, only a few being met with upon the same leaf; and these are scattered upon its under side, chiefly along the sides of the midvein, in the angles where the lateral veins are given off from it. Ants, moreover, are never met with accompanying them.

These aphides are of a smaller and of a more tender delicate appearance than their kindred. Most of the species are of a pale yellow or white color, with black rings upon their antennae, and their legs and wings are frequently varied with black or brown marks, which are much more clear and distinct than is usual in this family, the species of which, Linnaeus well remarks, are difficult to distinguish and more difficult to describe. That which is
most common upon the leaves of the hickory may be distinguished by the following characters.

The Little Hickory Aphis (Aphis Caryella) is pale yellow with white antennæ which are alternated with black rings, the wings transparent and without spots, their veins slender and pale yellow, the legs yellowish white to their ends. Length 0.12 to the tips of the wings. The abdomen is depressed, egg-shaped, its apex slightly narrowed and elongated. The antennæ are longer than the body, tapering, seven-jointed; two basal joints as broad as long, twice the diameter of the following joints: third joint longest, slightly thicker towards its base; fourth and fifth joints rather shorter than the third, cylindric; two last joints together about equaling the fifth in length; the sixth swelled at its tip into a long oval knob, the seventh more slender but not capillary, shorter than the sixth; a broad black band at the apex of the third and each of the three following joints. First vein of the fore wings straight and almost transverse; second vein bent near its base, running first towards the apex and then turning rather abruptly and continuing straight to the inner margin, more than twice as far from the first at tip as at base; third vein arising from the stigma near its anterior end, and not from the rib-vein forward of the stigma, as it does in the aphides generally, except those pertaining to this group, its base and its apex about the same distance from the second vein that this is from the first, forking rather forward of its middle, strongly bent at this point, and from hence to its tip parallel with the third vein or but slightly diverging from it, its tip a third nearer that of the third vein than this is to the second; second fork nearer the fourth vein at tip than to the first fork, the triangular cell between it and the first fork with its three sides equal; fourth vein short and often nearly abortive, shorter than the second fork, equally curved through its whole length, its tip much nearer that of the rib-vein than that of the second fork; rib-vein very slightly diverging from the margin from the base to the stigma, curved from thence to its tip. Stigma oval, about twice as long as wide, watery, sometimes tinged with yellowish. A variety has the stigma dusky at its tip. Another variety (costalis) has the rib-vein coal black interrupted with whitish towards the stigma, which is dusky, and black at each end.

In addition to the species now described, four others occur upon the under surface of the leaves of the hickory and walnut, similar to it in size, form and general color, and as some of these are frequently met with upon the same leaves with the preceding they might be suspected to be mere varieties. Their spots and marks, however, are so clear and definite and the veins of their wings are so dissimilar that we are obliged to regard them as distinct species. They may be named and briefly characterized as follows.

The Little Dotted-winged Aphis (A. punctatilla) is much like the preceding in the color of its body, antennæ and wings, but has black feet and a black dot on the base and another on the apex of each of the veins of the fore wings; the stigma is salt-white with a brown streak at each end; the second
vein is wavy and at its tip is curved towards the tip of the first vein; the third vein arises from the basal extremity of the stigma and forward of its furcation curves perceptibly towards the apex of the wing; the fourth vein is longer than the second fork.

The little spotted-winged aphis (*A. maculella*) differs from the *Caryella* in having only a slender black ring at each articulation of the antennae, the feet and a band near the tips of the hind thighs blackish, the stigma salt-white, its base black, its apex dusky; fourth vein with a black dot on its base and a dusky one on its apex; the first vein, apical third of the second vein, and the first and second forks broadly margined with smoky brown; second vein wavy and parallel with the third vein till near its tip where it curves towards the first vein, its base a third nearer the third than it is to the first vein; third vein arising from the anterior extremity of the stigma, with a dusky spot on its apex.

The little smoky-winged aphis (*A. fumipennella*) is of a dull yellow color with blackish feet and the wings smoky with robust brown veins, the rib-vein much more distant from the margin the first half of its length than in the other species, and from its middle to the stigma approaching the margin, the fourth vein, equaling the stigma in length.

The little black-margined aphis (*A. marginella*). Pale yellow, antennae white, their bases and four bands black; a coal black band in front between the eyes and continued along each side of the thorax to its base; elytra pellucid, stigma, outer margin and rib-vein coal black, first vein with a black dot on its base; fourth vein slender, black, the other veins colorless; outer margin of the hind wings black. Length 0.15.

In addition to the preceding, a remarkably large aphis is described by Dr. Harris, under the name of *A. Carye*. A species which forms plaits or folds in the veins of the leaves and which probably pertains to the genus *Pemphigus*, and also a woolly aphis (*Eriosoma*) inhabiting this tree is known to me. These, with the species which forms galls upon the leaf-stalks and twigs, make nine different kinds of these vermin, which live at the expense of our hickory and walnut trees.
INFESTING FOREST TREES.

THE PINE.

AFFECTING THE TRUNK.

Patches of white, flocculent, down-like matter on the smooth bark, covering exceedingly minute lice invisible to the naked eye.

The Pine Blight. — *Coccus Pinicorticis*.

Upon young White Pine trees, especially those which are transplanted to ornament our yards, may frequently be seen a species of blight, showing itself in the form of a white, flocculent cotton or down-like substance growing upon the smooth bark, particularly around and immediately below the axils where the limbs are given off from the main trunk of the tree. Often small white spots of this same substance are scattered irregularly and more or less densely over the whole of the bark from one whorl of limbs to another. It is upon the north or shaded side of the trees that these patches are most numerous, and upon the lower part of the body of the tree, where the foliage of the limbs growing above, produce a constant shade. Those parts of the body of the tree which are much exposed to the light of the sun are seldom, if ever, coated with any of these spots.

Where a tree is much coated with this white substance, it becomes sickly and presents a slender, dwindled appearance, its leaves are short and stinted in their growth, and of a dull green color, and the annual growth of the tree is much curtailed.

If, with the point of a needle, this white cottony substance be carefully parted asunder, under it, attached to the bark of the tree, may frequently be found the insect which is the cause of this
evil. When parted under a magnifier, the white matter appears like very fine Saxony wool, the crinkled fibres drawing apart as do those of wool. And under them, in each tuft, is discovered by means of the lens, a cluster of the insects alluded to, huddled closely together and fixed to the bark. They are so very minute, and so like the bark in their color, that it was not till after repeated examinations, that I was able to detect them. The insect is a louse so exceedingly small as to be wholly imperceptible to the naked eye, and is discovered with difficulty even when the eye is aided by a magnifying glass. Of these lice the larger individuals are little over the hundredth part of an inch in length, and smaller ones are associated with them not half this size. They are broad, oval, and nearly hemispherical in form, soft, of a black or blackish brown color, with their backs coated over more or less with a whitish meal-like powder. Three pairs of legs are perceptible, which are equidistant from each other. They are short, filiform and black. Little more than what has now been stated can be discerned with a common magnifying glass. When placed upon white paper, the dark color of the insect renders it very perceptible, and a very slight motion may be seen, but for which, one would deem it a speck of shapeless inorganic matter. Its powers of locomotion are so small that it does not attempt to crawl away from the point where it is placed, a slight gliding motion, to the distance of little more than a hair’s breadth, being all that it commonly accomplishes.

When highly magnified, the white meal-like substance upon the back of this insect is found to be a mass of short curling uneven filaments, coating the back and giving it a rough, shaggy appearance. The legs are short and robust, the shanks being nearly equal to the thighs in diameter, and the feet but little narrower at base than the shanks; they are conical, and seem to be of one single piece, ending at tip in two minute short bristle-like setae. The shanks are but little longer than broad, and slightly enlarged towards their tips. The thighs are slightly longer than the shanks and thickest in their middle. There are no thread-like or other projections at the hind end. The head appears to be separated from the body by a very faint transverse line. In the meal-like powder with which it is coated, no antennæ or organs to the mouth can be discerned; but on carefully rubbing off this powder, two little projecting conical points, one upon each side of the head, standing outwards like little ears, appear to represent the antennæ. Often the white powder upon the back appears like transverse bands, separated from each other by the slightly constricted black sutures of the body. The flat under side of the body is of a pale color, and in some individuals the upper side is also tinged with pallid.
I have never succeeded in discovering any winged individuals of this species, and hence cannot decide with confidence as to its genus. The one-jointed feet indicate that it pertains to the Family Cocciidae of the order Homoptera, and the facts in its history which are above recited, leave but little doubt that it belongs to the genus Coccus as restricted in systematic works at the present day.

By many the white pine is much esteemed as a shade tree around dwellings, particularly upon their north and west sides, for breaking off the winds of our severe northern winters. It is also highly prized as an ornamental tree in those sections of our country where it does not grow naturally. Hence whatever retards the growth and impairs the health of these cultivated trees, becomes a matter of interest. I have repeatedly noticed this blight upon transplanted trees, but have never observed it upon trees growing in their native situations.

There is every probability that scrubbing the affected parts of a tree with soap-suds, will prove a sovereign remedy for this as it is known to be for other species of lice. And this remedy will be of easier application here, than in most other cases where it is the small twigs of trees which are infested with these vermin. As this blight is located upon the trunks, chiefly of young trees, it can be readily reached by the scrub-broom. The remedy is so simple and so easy of application, that no one should suffer the young pines in his yards to dwindle and become stunted and sickly from this cause.
INFESTING GARDEN VEGETABLES.

THE CABBAGE.

AFFECTING THE LEAVES.

Eating holes in the outer leaves late in autumn; a small, cylindrical, pale green worm, wriggling briskly when disturbed, and letting itself down by a thread.

The Cabbage Moth. *Cerostoma Brassicella.*

One of the most important culinary vegetables which we cultivate, the cabbage, is in Europe subject to the attacks of quite a number of caterpillars and moths, some of which prey voraciously upon it. In our own country this vegetable probably has as many of these enemies as abroad; but so little attention has been bestowed upon our noxious insects, that only two of these have as yet been publicly noticed; the cut worm, which is everywhere such a grievous pest, and the caterpillar of our white butterfly, which, however, subsisting upon mustard, turnip, and most other plants of the extensive order *Crucifera,* seldom invades cabbages in such numbers as to injure them. But I come to speak of another worm, a moth, which makes greater havoc upon the leaves of the cabbage than any insect which has yet been noticed at home or abroad. And although it has not yet been observed within the confines of our own State I entertain no doubt that it exists here, and that it will at times become multiplied in particular localities, to the same extent that it has been in one of our sister States the past season.

In the neighborhood of Ottawa, Illinois, in October last, I observed the cabbage leaves in the gardens perforated with numerous holes of variable size and irregular form, by a small green worm. Some gardens were so much infested that all the outer
leaves of the cabbages were literally riddled with holes, more than half their substance being eaten away. And at almost every step, numbers of the little moths which hatch from these worms would arise upon the wing and flit away a few yards, to some covert. Fortunately, it is only the free outer leaves of the cabbage which are preyed upon by this worm, whilst the compacted inner leaves, forming the head, on which the value of this vegetable depends, are left uninjured. But there is no doubt the eating away of the outer leaves, to such an extent as is frequently done by this worm, weakens and stints the growth of the head, which, it is well known, continues to advance in size until the very end of the season. And among those varieties of the cabbage which do not form large and compact heads, such as the Savoy and broccoli, this moth must be utterly ruinous. Even if it did no direct injury to the vegetable, the presence of these little green worms, in such numbers upon the leaves, wriggling about so spitefully when disturbed, is quite annoying; and the eroded leaves mar the tidy appearance of the garden.

It is a little remarkable that this species occurs in all its states so late in the autumn as the middle of October, as the several British moths which are co-generic with it all make their appearance in July and August. It is hence altogether probable that there are two generations of the moth in each year; and if so, the first generation will make its appearance, it is quite likely in the month of June, or at all events before the heads have begun to form and when all the leaves are young, open, and adapted for its resort. It will consequently be liable, then, to do great injury to this vegetable.

This worm in its appearance, motions and habits, has a close resemblance to the Palmer worm which has recently stripped the foliage from our orchards and forests so extensively, and to
which, as we shall presently see, it is nearly related. When it is disturbed, with a wriggling motion it runs briskly backwards, or by a fine cob-web like thread lets itself down from the leaf. Its castings are little black grains, which appear like gunpowder sprinkled thickly over the leaves and the ground beneath them. The pupa or chrysalis is enveloped in a very pretty gauze-like cocoon, which may be found attached to the eaten leaves, two or more of them frequently in a cluster together. It is spun of clean white threads, crossing each other and forming an open net work, through the meshes of which the enclosed chrysalis may be distinctly seen. The threads composing the net-work are coarsish and not very stout. They may readily be broken with the point of a needle, and the inclosed pupa be thus removed from its case for examination, though the cocoon is so slightly attached to the leaf that it is frequently torn loose in thus breaking it open.

Interspersed with these gauze-like cocoons upon the leaves, others may be met with quite different in their appearance, being opaque and of a thick paper-like texture and a brown color. They are of an elliptic form, rounded at both ends, and only about the tenth of an inch long and a third as broad. These have been constructed by the larvae of parasitic Ichneumon-flies which have destroyed the worms of the cabbage moth. And from the information I possess, it appears that this parasite deposits but a single egg in each worm, from which a maggot hatches, which feeds internally upon the worm, yet without attacking any vital part whereby the worm would be prematurely destroyed. Thus the parasite, as in other cases of this kind, attains its growth at the same time that the worm reaches maturity, when the maggot finishes its work by destroying the little that remains of its foster parent, and immediately incloses itself in this paper-like cocoon. Of three mature worms which I enclosed in a small box over night, only two were found the next morning. All vestiges of the third had disappeared, and in place of it was one of these paper-like cocoons.

But as the worm of the Cabbage moth is such a choleric, mercurial little fellow that when he is molested, be it ever so slightly,
he darts backwards and wriggles about so suddenly and spitefully, it will be an interesting topic for some future observer to notice by what artifice his mortal foe induces him to remain quiet or is able to cling to him long enough to puncture and drop an egg within his skin. The knowledge and skill which these Ichneumon and other parasitic Hymenopters often show in their proceedings is truly wonderful. Every person will recollect the larva of the Isabella tiger-moth (Arctia Isabella)—the large caterpillar with stiff even-shorn hairs of a tan color and black at each end of his body, which crawls about our yards and often enters our dwellings—and will probably have observed the fact that if when crawling he is rudely touched he suddenly stops and doubles himself together for a moment, and then straightens himself again and resumes his journey. The long stiff hairs with which he is protected much like a porcupine, we should think would render it impossible for an insect enemy to place an egg anywhere upon his skin. Mr. P. Reid tells me he once saw one of these caterpillars crawling with a hurried eager step across a dusty road, with an Ichneumon fly pursuing him, striving to cling upon his back, but falling off in consequence of the rapid motion of the caterpillar. The fly finding itself frustrated in its every effort, next, as if humming to itself the refrain "Twill never do to give it up so," flew a few feet forward of the caterpillar, and turning, darted back with all its energy, hitting the caterpillar square in his face. The caterpillar thus roughly assailed suddenly stopped and bent himself together in his accustomed manner, and in an instant the fly, alighting upon his back, appeared to fix an egg at the margin of one of the breathing pores, which had become fairly exposed by the caterpillar doubling his body thus together. In a moment the caterpillar was recovered from his shock and was crawling rapidly forward again, when the fly struck him a second time in the same way, and thus he was stopped and had an egg deposited upon his side three times, before he reached the tall grass beside the highway, in which he was secure from further molestation. And it is probable that by some artifice equally curious and remarkable, the parasite of the Cabbage moth is able to drop an egg into the skin of his irritable, brisk motioned victim.
This moth pertains to the genus Cerostoma of Latreille and the British entomologists, a genus belonging to the family Tineidae, and intimately related to that to which the Palmer worm pertains—both genera having the feelers with a tuft of scales projecting forward like a beak, from the middle of which beak the slender terminal joint stands upwards like a little horn. The larvæ of the two genera are also identical in their appearance and habits. The genus Cerostoma is described as differing from that of Chatochilus in having the wings narrower and rounded at their ends, differences which are so slight as to be scarcely discernable on a comparison of this species with the moth of the Palmer worm. The antennæ, moreover, are directed forward instead of being turned backwards and lying upon the back; but this is a character which is liable to be deceptive except when observed in the living speci-
men. The light color of the inner margin of the wings, however, and the lace-like cocoon of the pupa, leave no doubt that it is the genus Cerostoma to which our insect must be referred. Stephens (Illustrations, Haustellata, vol. iv. p. 341) says the spiral tongue in this genus is "shortish," whilst Westwood (Humphrey's British Moths, vol. ii. p. 245) gives it as "long and slender." The latter is certainly its character in our insect, where it is about equal to the antennæ in length. Our species is closely allied to the C. porrectella, Lin., the worm of which Mr. Westwood found feeding upon the buds of the White Rocket, a plant of the same family with the cabbage, and which forms an open-net work cocoon the same as our species.

The worm of the Cabbage moth is nearly cylindrical in its form, rather thickest in the middle, and slightly tapering towards each end. It is over a quarter of an inch long, measuring when full grown 0.35, and is the thickness of a coarse knitting needle. It is varied in its color, but is most commonly pale green, of the same hue as the cabbage leaf. Some are of a deeper tinge and others paler, varying to greenish yellow or pale yellow. Often the hind part of the body is paler than the fore part. Frequently the head or the apical segment or both are pale yellow, the rest of the body being of the usual green hue. Individuals may sometimes be met with having the head dusky or black with dusky clouds. The neck is frequently tinged with red. Commonly a stripe along the middle of the back is more or less distinct, of a deeper green color or blackish in places; and on each side of the back a similar stripe may be discerned, whilst low down on each side a whitish stripe is sometimes apparent. With a magnifying glass the body is perceived to be clothed with several short black hairs which proceed from minute black
dots each of which is surrounded by a faint pale ring. These dots are symmetrically arranged, and are situated the same as in numerous other larvae of moths, each of the segments of the body having four of them above, placed at the angles of an imaginary square, of which the anterior side is shortest; whilst on each side are four other dots, placed at the angles of an imaginary rhombus, the upper and lower angles of which are very acute. There are numerous dots on the neck, and the head is commonly freckled with a number of dark brown dots. There are sixteen legs, and the two first segments of the abdomen at first glance appear to be furnished with legs also, being bulged on their under sides, so as to touch the surface on which the worm stands.

The chrysalis or pupa is one-fourth of an inch long by 0.05 in width. It is commonly of a white color, with large deep-black eyes situated inside of the base of the antennae sheaths. Quite frequently the white color is varied withumber-brown stripes, whereof there is one on each side of the back, with a very slender brown line between upon the middle of the back. The wing sheath is brown on the upper margin, with a brown stripe in the middle and a more slender one inside of it, parallel to each other, and both running into the marginal stripe, this last being prolonged upon the abdominal segments to the tip. The sheath of the antennae and of the legs are also brown. These brown stripes remain upon the pupa skin after the moth has been hatched from it, but the black color of the eyes then disappears.

The winged moth measures 0.30 in length to the tips of the closed wings, and these, when expanded, measure 0.58. It is of an ash gray color. The fore wings are freckled with black dots on the disk and apex and have a common white stripe on their inner margin reaching to the hind angle, which stripe is wavy upon its inner edge and near the middle of the wing is bordered by a dark brown streak; the fringe of these wings is traversed by one or more blackish lines which are parallel with the margin. The hind wings and also the under sides of both pairs are leaden brown, glossy, and without any spots or dots. The antennae and the under side of the abdomen are white. This moth is somewhat variable in the depth of its color, being frequently dark gray, and the stripe on its wings is not always pure white and distinct.

Facts so far as observed indicate that when this and its kindred species are favored with unusually dry weather at the date of their appearance in the larva state, the species suddenly becomes excessively multiplied, overrunning particular sections of country like an invading army. When I observed this cabbage worm a drouth was prevailing through northern Illinois, that was said to be without a parallel since its settlement. And hence we infer that thoroughly showering the vegetation which is attacked, with water, will be found a most effectual remedy for the expulsion of the worms of this group. With the cabbage moth this measure can easily be resorted to, a common watering pot being the only apparatus which is required.
THE GOOSEBERRY.

AFFECTING THE FRUIT.

The young fruit becoming red and putrid, containing within it one or more small bright yellow maggots.

The Gooseberry Midge.—Cecidomyia Grossulariae.

It is common to find upon the gooseberry bushes in our gardens some of the young fruit of a prematurely ripe appearance, turning red and dropping to the ground. Some years much of the fruit is lost in this way. This premature ripening of the gooseberry is caused by insects puncturing and depositing their eggs in it. We have at least two insects which thus attack the gooseberry. One of these appears to be a species of moth which I have not yet obtained in its perfect state. The other is the larva of a midge or a small two-winged fly, of the genus Cecidomyia and family Tipulidæ. On examining some of these affected gooseberries early in July, their pulp was found to be putrid and infested with small maggots of a bright yellow color and oval form, their bodies divided into segments by five impressed transverse lines, and their whole appearance being closely like the larvæ of the Wheat midge, found in the ears of wheat. These completed their transformations and gave out the winged flies the latter part of the month of July. In size, number of joints to the antennæ, etc., these correspond with the C. Ribesii of Europe, but that is described by Macquart (Dipteræ, vol. 1. p. 162,) as having black bands upon the thorax, the abdomen blackish, &c. Hence it is evidently a much darker colored species.

The Gooseberry Midge is scarcely the tenth of an inch in length to the tips of the closed wings. It is of a pale yellow color, the thorax paler than the abdomen, and of a wax-yellow hue; eyes black; antennæ blackish, of twelve joints, separated by hyaline pedicels one-third as long as the joints, which are short cylindrical with rounded ends, their length scarcely more than double their breadth; legs straw yellow, faintly tinged with dusky towards their tips; wings hyaline, faintly tinged with dusky.

It is probable that these flies which come out the latter part of July deposit a second crop of eggs in the gooseberries, or else resort to some other fruit of a similar nature, and that the larvæ which come from these eggs lie in the ground during the winter; for we do not perceive how, otherwise, there can be flies in June to deposit their eggs in the young fruit.

All fruit upon the gooseberry bushes which is found prematurely decaying and assuming a ripened appearance, and all which falls to the ground, should be gathered and thrown into the fire, to destroy the worms which the berries contain. By attention to this measure the haunts of this insect in the garden can be easily broken up, whereas, if this step is neglected the evil will be liable to continue year after year. As this insect breeds equally well in the wild gooseberries, we cannot hope to exterminate it from our country. But none of these wild gooseberries should be permitted to grow in the vicinity of the garden, for from them, if near, this midge will continually be finding its way to the bushes of the cultivated gooseberry.
REPORT
ON THE
NOXIOUS, BENEFICIAL AND OTHER INSECTS,
OF THE
STATE OF NEW-YORK.

By Asa Fitch, M. D.

Executive Committee of the New-York State Agricultural Society:

I herewith present a second Report on the Noxious and other Insects of the State, continuing the account of those species which are injurious to fruit and forest trees, and commencing those which are injurious to field crops. The Report heretofore presented has been so favorably received, and has made the plan and character of the work in which I am occupied so generally known, that no explanations upon this subject are required. Nor is it necessary that I should say a word upon the importance of this Survey of the Economical Entomology of our State, our citizens being universally aware of its value, and of the benefits which will result to agriculturists, orchardists, and others from being informed how they may manage their crops, treat their fruit trees, &c., to shield them from the depredations of insects. Yet but a small part of the injury which we are sustaining from this class of creatures is at present known. Many of them are so minute, so seemingly insignificant and powerless, and conduct their operations where they are so concealed from view, that the damage which they occasion is currently imputed to other causes, and the real culprit is never suspected. Thus, it is commonly supposed that the reason why we now fail to raise such crops of wheat as our lands produced when they were

[Assembly, No. 215.] 12
newly cleared, is because the soil has become exhausted, the temperature of the winters has changed, &c. But my researches the present season have impressed me with the belief that the insect depredators upon this grain, which have found their way into all parts of our country where wheat has long been cultivated, are the sole cause of the present meagerness and uncertainty of this crop. Having been looking at the wheat midge and the Hessian fly only, in former years, other insects living at the expense of this grain had escaped my notice; and now, on turning my attention again in this direction, I have been astonished to find our growing wheat preyed upon by multitudes of different species of Chlorops, Oscinis, and Thrips, insects which in Europe have long been known as most inimical to the wheat crops there, but which have never hitherto been noticed on this side of the Atlantic. From the time that the blade shoots from the ground until the ripened grain is carried into the barn, it appears at every stage of its growth to be exposed to the attacks of one and another of these vermin. And with such a host of these enemies to withstand, our chief wonder is that this crop is not utterly devastated every year. Could it be released from them, it is evident wheat in all the old settled parts of our State and country would be as sure and productive a crop now as it was when our lands were newly cleared. Whether we shall be able to discover remedies or modes of cultivation by which their attacks may be prevented appears doubtful. Still, every one is aware it is highly important that the habits and transformations of each of these insects should be fully examined, and the information thus elicited should be diffused among the cultivators of our soil. That such knowledge will enable them to elude at least a portion of these depredators, in many instances, there can be no doubt. The following extract from the commencement of a letter from a gentleman in Ohio, written soon after the wheat harvest of 1855, shows what benefits result from knowledge of this kind. He says: "I see from the Country Gentleman that you have become very familiar with the whole insect family. I think that when this subject is brought to bear upon agriculture, horticulture, &c., its usefulness will be unlimited. The farmers here are beginning to see the necessity of some knowledge of
Entomology; for when they see whole fields of wheat and corn cut off and wholly destroyed by insects, they are in deep trouble, and would spare no pains or expense to get out. A year ago last fall as I was about to sow my wheat, I read very carefully your articles on the wheat fly or weevil as we call it here, and the Hessian fly, and treated the crop according to your reasoning, and the consequence was, I got one-third more wheat to the acre from the poorest of my land than my neighbors did from new ground.

In a document of such compass as the one I here present, embodying such a multitude of observations, upon subjects which have hitherto been but little studied in our country, I do not flatter myself that every thing stated is accurate and free from error. Aware from my own experience in how many instances reinvestigating the structure and habits of an insect causes me to modify and change the opinions which previous observations have led me to form, I cannot doubt that in numerous instances further examinations of the species here treated of will show that amendments are required. I regard these reports as only a foundation, a stepping-stone to further researches in this direction, whereby any errors into which I may have fallen will be corrected and the habits of each particular species will become fully examined and made known. As it is german to this subject, I take the liberty to add a paragraph from a letter which came to hand as my previous report was passing through the press, from Mr. Curtis, whose recent articles on insects injurious to field and garden crops, in the Journal of the Royal Agricultural Society furnish such admirable models for essays of this kind, and whose great work on British Entomology, illustrated with unsurpassed clearness and accuracy, constitutes an enduring monument to his fame. He says, "I rejoice to find you are setting to work in good earnest with the noxious Insects of America. One of the most important steps is to get their correct scientific names, and as far as possible to identify your species by giving good figures of them. For want of correct names a vast portion of the published accounts by Gardeners and Farmers previous to the publication of Dr. Lindley's Gardeners' Chronicle, relative to economic Entomology, were worthless."
Wireworms, Bugs and Spiders, meaning anything and everything. You must not hope, however, to arrive at perfection at once; for the greater my experience, the more I am convinced that the first accounts of the economy of noxious insects cannot be made quite correct. So that in fact they become feelers and targets for the critics to fire at. But from such attacks, it is incredible what information may be collected and errors corrected. I am sure you will excuse the liberty I take in thus offering you my experience, and urging you to persevere in exploring the path you have chosen, so full of interest to yourself, and so important to mankind."

Respectfully submitted,

ASA FITCH.
INSECTS INFESTING FRUIT TREES.

THE APPLE.

AFFECTING THE LEAVES.

Consuming the leaves of apple and cherry trees in May, and forming large cobweb-like nests in the forks of the limbs; black, hairy, caterpillars, with white lines and along each side a row of blue spots; living together in societies.

The Common Apple-tree Caterpillar, or American Lackey moth, *Clisiocampa Americana*, Harris. (Plate 3, fig. 3, the male; fig 4, the female.)

There is scarcely an insect in our country more universally known than is the one which we are now to consider, when in its larva state, it being the common caterpillar, whose cobweb like nests are everywhere seen, in the month of May and the fore part of June, upon apple and cherry trees. But, though every person is so well acquainted with these caterpillars, there is not one of our citizens who knows the moth or miller into which they change; and those to whom I have shown this miller, have generally expressed their disappointment at finding it so small, so dull colored, and so little ornamented with spots or marks, they having supposed from the size of the caterpillar, and the colors with which it was variegated, that it produced a much larger and more gay looking insect.

This insect pertains to the Family Bombycidae, or the thick, hairy bodied moths of the Order Lepidoptera, the silk worm (*Bombyx Mori*) being the type of this group. And the moth of our apple-tree caterpillar in its size and general appearance has much similarity to that of the silk worm, though differing from it notably in its color, and also in some of the minute but important points in its structure, which cause it to rank in a dis-
distinct genus, named *Clisiocampa*. This genus was formed by Mr. Curtis, for the reception of two common European moths, which are most intimately related, both in their appearance and habits to our American insect, one of them named *C. Neustria*, stripping the foliage from the fruit trees in Europe, and forming its nests upon the trees in the same manner as does our caterpillar. It was hence formerly supposed that our insect was probably identical with the *Neustria*. The botanist Sir James Edwin Smith, however, in editing Abbot's notes and drawings of the Lepidopterous insects of Georgia, deeming that another American moth which has been named *Clisiocampa sylvatica* by Dr. Harris, was the *Neustria*, supposed this was the other European species, and accordingly published it as the *castrensis* of Linnaeus. It is to Dr. Harris that we are indebted for setting this subject in its correct light, and showing that both our American species are distinct from those of Europe. And he accordingly named our apple-tree caterpillar *Clisiocampa Americana*, or the American lackey moth, the name lackey being the current English designation for these moths, in consequence of the blue, red and yellow stripes upon the caterpillars having some resemblance to those on the coats in which the lackeys or footmen are dressed. About the only difference which can be discerned between our American lackey moth and the *Neustria*, is in the two stripes upon its fore wings, they being straight and parallel in our insect, whereas in that of Europe these stripes diverge slightly, so that at their inner ends especially, they are more distant from each other than in the middle. But as the colors and stripes are subject to considerable variations, we could not be fully assured that the insects of the two continents are distinct by merely examining them in their perfect state. When we come to look at their larvæ, however, all doubts upon this subject vanish, the caterpillar of the *Neustria* having three red stripes along each side, which do not appear in our caterpillar, and it is destitute of the rows of light blue spots on the sides which we always find in the latter. And if any further evidence was necessary as to the correctness of Dr. Harris in regarding these insects as being distinct species, we have it in some of the habits of the caterpillars. The European insect attacks almost all kind of trees, evergreens
as well as deciduous. But our American caterpillar is unable, I think, to subsist upon any trees of the evergreen class. A nest of the young worms, on being attached to the limb of a pine tree all died of starvation. A nest of half grown ones, tied among the foliage of a tamarack or larch all forsook the tree in the course of two or three days, without eating any of the leaves that I could discover. Another nest of half grown worms having consumed all the foliage of the bush on which they were hatched, and being obliged to migrate elsewhere, came first to a spruce tree, but passed on without ascending it, as though aware it was unsuitable for their nourishment. And in those rare instances in which single full grown caterpillars may be met with upon the hemlock and pine, they have probably ascended these trees in search of a secure place for spinning their cocoons, and not to feed upon the leaves.

Nor is our caterpillar by any means a general feeder upon deciduous trees. The experiments and observations which I have made, to ascertain upon what kinds of foliage it is able to sustain itself may here be briefly recited. It is well known that it decidedly prefers the wild or native black cherry to any other tree, and next to this it is most fond of the apple, although it is about equally fond of the choke cherry and of the cultivated garden cherry. Its nests may also be occasionally met with upon the bird or small red cherry, upon the wild plum and upon different species of the thorn (Crataegus), and I doubt not the caterpillar will thrive and grow to maturity upon almost any of the trees and shrubs which pertain to the natural order Rosaceæ, as I have repeatedly noticed it feeding upon the leaves of the shad bush (Amelanchier), the rose, &c. Some of the trees of this group, however, are unadapted to it; the peach, for instance. On the tenth of June, when the caterpillars had mostly attained their full size, a nest was noticed upon a peach tree, below the belt of eggs from which it had hatched. But all the worms in this nest, were at that late date quite small, being only about a third grown. So far as a single observation can be relied upon, it appeared that this tree was unadapted to these caterpillars, and that the parent insect had erred in placing her eggs upon it, probably having mistaken it for a species of cherry.
But this insect is not entirely limited to trees of the cherry and apple kind. I have seen its eggs placed upon the witch hazel (*Hamamelis*), and the caterpillars from them when nearly mature, appeared as thrifty and well fed as those upon the apple trees. Three small nests, each containing about two dozen worms, were once seen upon a small beach tree. On willows numbers of these caterpillars may be seen every year, when they are nearly mature; and on tying a cherry twig, containing a nest of worms but two or three days old, to the limb of a yellow willow, they were found to grow as thrifty as those in other situations. The poplars, at least our indigenous species, appear to be equally congenial to them. And the white oak, the leaves of which are small and tender when the caterpillars are nearly full grown, they feed upon freely. The black or quercitron oak seems unadapted to them. The young worms of a nest tied to this tree languished and after a time all died; a nest of half grown worms ceased to advance further in size, and finally the more robust individuals appeared to have abandoned the tree, and the remainder perished. Nests of worms when half grown were placed upon the lilac, the syringa (*Philadelphus coronarius*) and the striped dogwood (*Viburnum Acerifolium*). In each of these instances the nests were forsaken by the worms within a day or two. A nest of worms newly hatched and too young to migrate elsewhere, was placed upon the garden currant, and another upon the alder (*Alnus*). In each of these instances the worms sustained themselves upon the leaves but made scarcely any advancement. When the caterpillars on other trees were mature these had not attained a third their size. They however all continued in their nests, feeding slightly upon the foliage around them, until the period for spinning their cocoons had nearly expired. They then suddenly dispersed themselves and probably all perished, being too small and weak to construct their cocoons. The fact shows that animal life may for a long time be sustained upon food which is so unpalatable and so little nutritious to the individual that no growth or development can take place.

Like other insects, this is much more numerous in particular years. This fact has been noticed from the earliest times. We
thus have it on record within thirty years after the first settle-
ment of Massachusetts, that 1646 and 1649 "were caterpillar
years," and that in 1658 "caterpillars did great harm to fruit
trees" (Flint's Agricult. of Mass. 2d report, p. 33). Without
specifying other years which have been similarly distinguished,
I would state that during the past twenty-five years I have never
seen these insects a fourth as numerous as they have been the
present year, 1856; and they appear from accounts to have been
multiplied to an unusual degree all over our country. And it
would seem that those seasons which favor the growth of fruit
also favor the increase of these insects, our orchards having never
been so overloaded with fruit before as they were in the year
1855.

The eggs from which these caterpillars come are placed near
the ends of the twigs, in clusters, forming a ring or rather a
broad thick belt, surrounding the branch entirely or in part, as
represented (diminished in size) in the annexed cut. In these
belts I have counted from three hundred to three
hundred and thirty eggs. They are about three
fourths of an inch in length and the tenth of an
inch thick.

The eggs are of a short cylindrical form with abruptly
rounded ends. They are about 0.04 long and two-thirds as
broad. The shell is of a very tough leathery texture and of
an ash-gray or white color, the inside having a bluish tinge,
somewhat resembling that of mother-of-pearl. The eggs are
placed perpendicularly upon the twig, to which they are
firmly glued, the lower end being indented to give it a more
secure attachment to the bark. They are also arranged side
by side somewhat symmetrically in rows, their sides being slightly indented
or moulded to each other and firmly glued together in one mass. Those eggs
which are at the ends or margin of the mass are placed in an inclined position
and the outermost ones are laid horizontally upon the bark, in order to pro-
duce a gradual slope from the surface of the mass to that of the bark.

The eggs are covered over with a thick coating of glutinous
matter which entirely hides them from view and protects them
from the weather. This matter is slightly transparent, and full
of small air bubbles, giving its surface the appearance of net
work. Its color varies from black to pale, but it is commonly
darker than the bark, and its outer surface is smooth and shining
as though coated with varnish. Although moisture cannot dis-
solve and wash off this glutinous matter, it softens it, so that it can readily be indented by the finger nail, whenever it is wet by rain or dew. And when thus softened, birds frequently pick into it, forming irregular openings in its surface, as represented at the lower part of the figure in the foregoing cut. They probably suppose it to be the chrysalis of a moth, and that they will enjoy a dainty repast on reaching the inside; but on coming to the outer ends of the eggs and finding how tough and compacted together they are, they desist, never destroying any of the eggs that I have noticed.

These eggs are deposited upon the twigs the fore part of July, and remain through the autumn and winter, and until the latter part of April and the beginning of May, when the young caterpillars hatch from them. Thus during ten of the twelve months of each year these insects repose in their egg state. They always hatch in wet or at least damp weather, when the thick covering of glutinous matter in which they are enveloped is soft, so that they gnaw a passage through it with ease. If it were not thus softened the infantile worms would be wholly unable to work their way through it. If a twig containing one of these belts of eggs be brought into a stove room where the atmosphere is constantly dry, scarcely a half dozen of the worms, if any, will be able to come forth from their nest. And this glutinous matter thus softened, forms a store of nourishment for the worms when they first hatch. They remain clustered together upon its surface and feeding upon it, for one or two days, until they have acquired strength to travel away and forage for themselves.

Thus more or less of this matter is consumed, and the belt of eggs now presents the appearance shown in the accompanying figure, its surface not smooth and shining as before, but rough and ragged, with the white ends of the eggs exposed to view, at least in places, and each egg showing a small perforation in its end through which the worm made its exit.

The infantile worms having fed upon the matter which envelopes the eggs until they have obtained sufficient strength for the journey, move down the limb one after another, each spin-
ning from his mouth a fine silken thread which he attaches to the bark, whereby his foothold and that of those who follow him is rendered more secure. On coming to a fork of the limb, they halt, and there erect a kind of tent for their subsequent residence, by traveling around the spot, spinning their threads in every direction, hereby forming a web resembling that of a spider. This at first is quite slight, and wholly inadequate to shelter them. Hence if a rain comes on it penetrates the web everywhere, and the young worms may be seen crowded together in a mass, in its driest part, upon the under side of the limb. But thousands of additional threads being added to it each fair day, it rapidly becomes more substantial and better adapted for their protection.

The caterpillars hatch earlier or later as the season is more forward or backward. Commonly the earliest clusters of eggs are hatched by the twenty-fifth of April, and the latest are a fortnight afterwards or even later in giving out their broods; but the worms are mostly out of their shells by the first of May. At this time the apple-trees are as naked as in winter, their buds being merely swollen, and showing the red and green awl-like points of the leaves beginning to protrude from their ends; and the leaves of the garden cherry are also still inclosed within their buds. The wild black cherry, however, is much earlier in putting forth its foliage, its young leaves at this date and also the stems which bear its flowers being half an inch in length. Hence the young caterpillars which find themselves upon the latter tree are most fortunate, having an ample supply of food to meet their wants, whilst those upon the apple and cultivated cherry are obliged to wander about, nibbling what little they can reach in the ends of the buds, and probably are often much pinched with hunger before the vegetation has advanced sufficiently to enable them to feed fully.

When they first come from the eggs these worms are less than the tenth of an inch long, and about the thickness of an ordinary sized pin, their bodies broadest at the head, and slightly tapering, of a black color with pale feet and slightly clothed with fine whitish hairs. At first they merely nibble a small spot upon the surface of a leaf, or perforate a small hole through it,
or gnaw a slight notch in its side, for a meal, and as soon as they have fed thus much it can be seen that their bodies are more plump, and fine whitish lines begin to appear upon them. As they increase in size, and especially each time they change their skins, their color becomes more diversified. They change their skins five or perhaps six times at intervals of from three to nine days, the worm gaining from an eighth to a quarter of an inch in length each time it throws off its old skin.

When young they go out to feed much less frequently than when they are larger. They move about entirely at hazard in search of food, having no power of smell or other sense to guide them, as I infer from having placed apple and cherry leaves in the direction in which famishing worms were traveling, and seeing them pass quite near and almost touching such leaves without discovering them. Nor when a store of food has been discovered by some of the worms of a starved nest, have they any mode of communicating the information to the others. The rest of the nest probably discover the fact that some of their comrades have obtained a full meal, and thus know that food is somewhere within their reach, but they are obliged to wander about at hap-hazard until they find it. And I have noticed one hungry worm and another after examining the end of every twig upon a limb unsuccessfully for food, on returning down the limb meet several others going out upon the same errand; yet they pass their comrades without those who are coming in having any mode of informing those who are going out that their journey will be wholly fruitless.

As a general rule each nest has its stated hours for feeding and for repose, all the worms going out and returning in a regular procession, one after another. They repair to a particular limb of the tree, frequently a limb which is distant from the nest, and there feed together, occupying every leaf and three or four worms often eating upon one leaf. In pleasant weather they have usually three meals in twenty-four hours, one in the morning, one in the afternoon, and another in the night. But there is much irregularity in all these points of their history. A part of the worms are often at rest in their nest while the others are out feeding. And when they are about to cast their skins
they wholly cease from feeding for one or two days, remaining all the time within the nest, those portions of the brood which are not ready to moult being at such times the only ones which go out to feed. From the most exact observations which I have been able to make, each worm appears to consume about two-thirds of an apple leaf at each meal—the leaves being small when the worms are young, and fully grown as they attain their full size. A worm an inch long which I confined in a tumbler fifteen days, noting the number and size of the leaves I fed to it, ate on an average an ordinary sized apple leaf, two and a half inches long and half as broad, daily. But thus confined, it took no exercise, and spun no web; and it thus required but half the food, probably, which it would have consumed had it been at liberty. I regard this therefore as confirming the correctness of the observations which I had previously made. It thus appears that each worm devours two leaves daily. And as each nest contains about three hundred worms, every owner of an orchard will perceive that with every caterpillar's nest which he allows to remain upon his trees, the trees lose six hundred leaves daily.

They always travel upon the upper side of the branches and limbs. And each worm, wherever it goes, spins a thread of silk, which not only gives it a more secure foothold, but serves also as a clue to guide it back to the nest again. Much of the traveling of these worms appears to be solely for exercise. As one after another has satisfied himself with food, he comes back to the nest and walks around upon its surface in every direction, thus adding new threads to it. Other worms having also completed their meal, are coming home to their tent every moment. Thus its surface begins to become crowded and is perfectly black with the multitude of full fed individuals which are rambling about upon it, and the throng is constantly becoming more dense with new arrivals from the feeding ground. Hereupon some of them start away, up one of the limbs leading from the nest, and which is covered with cobweb threads from having been so often traveled before. Others follow after these leaders, and the limb through its whole length is soon thronged and black with a procession of worms, going out to its extremity and back; thus making room on the surface of the nest for other individ-
uals who are every moment returning there from feeding. Having taken this journey to the end of the limb and back and thus had the amount of exercise which they require, they crawl into the tent and there compose themselves to rest. Thus when but a few straggling worms remain upon the limb on which they have all been feeding, a few others will be seen journeying homeward to the tent, a multitude of others will be seen walking about upon the surface of the tent spinning their threads, many more will be seen traveling upon both of the branches which fork off from the tent, some of them going out and others coming in, whilst the inside of the tent is black with the multitude that has completed their labors and retired to repose. The ranks of each of the sections first specified gradually become thinner, until at last all have withdrawn into the tent.

Dr. Harris (Injurious insects, 2d ed. p. 237) says these caterpillars "all retire at once when their regular meals are finished;" and it must hence be inferred from his account that it is after reposing and before going out to feed that they strengthen their nests with additional threads. But from repeated observations I am assured that it is after feeding and before retiring to rest that they add the new threads to their nests. The routine in which they pass their lives consists of the three acts, feeding, exercising, and resting. Dr. H. also says that "At all times when not engaged in eating, they remain concealed under the shelter of their tents." But upon warm days when the sky is serene, they do not retire into their tent at all, but repose upon its outside, which is literally covered with them, and so black that at first sight persons suppose the nest to be a black hat placed in the tree. They are very sensitive to atmospheric changes. Upon rainy days they remain within their tents and do not go out to feed; yet I have repeatedly seen them feeding at night when the leaves were wet with dew, and still oftener in the morning before this moisture had evaporated. On the eighth of May, the worms on a bush which I had taken into my study, went out of their nest to feed in the morning; but it coming on to rain out of doors, they all quickly returned into the nest. I hereupon kindled a fire in the stove and the warmth had no sooner commenced diffusing itself through the room than these
worms poured out of the nest again and commenced eating, voraci-
ously. And invariably upon very warm days these caterpillars eat much more ravenously than at other times. Two or three
days of hot weather, such as frequently occur about the time of
planting corn, give them greedy appetites and cause them to
advance rapidly in size.

The tent or nest, which is always placed in the fork of a limb,
is enlarged from time to time, until it becomes from eight inches
to a foot in diameter. It is composed of a number of sheets or
layers formed of silken threads woven closely together like dense
cob-webs. These sheets are placed parallel to each other, and
at such distances apart as enable the worms to crawl between
them to repose, the spaces being much narrower between the
inner layers, formed when the worms were small, than between
the outer ones. The nest thus resembles the several sheets,
blankets and other coverings upon a bed, separated sufficiently
to receive a row of sleeping persons between each of them. As
each new layer which is added to the structure is exactly pa-
rallel with the one below it, presenting the same elevations and
hollows, it was formerly a query in my mind how the worms
were able to place the first threads of these layers, for a scaffold-
ing on which to walk to complete the tissue. But, like many
other phenomena in nature which are a mystery to us at first,
this becomes quite simple when fully observed. The caterpillars
as already stated, repose in serene weather on the outer sur-
face of the nest, lying side by side as compactly as they can stow
themselves. Straggling individuals coming in from feeding at
this time, to spin their threads upon the surface of the nest, and
finding it covered to a greater or less extent by their slumbering
comrades, proceed with their work as usual, traveling over the
backs of the reposing caterpillars to and fro in every direction,
thus spreading a blanket upon them as it were. These caterpi-
lars on awakening from repose, in order to make their exit,
crowd the thin threads aside in two or three places, thus form-
ing round holes through the web, which thenceforth become the
doors through which they pass in and out of the new apartment.
The old portions of the nest become foul, being filled with the
shrivelled cast skins and black grains excreted by the worms.
In almost every nest a few small worms may be seen, not half the size of the others. These do not appear to be individuals which have been stung by parasites, as some have supposed, for I find such dwarfs in nests I have reared within doors, where it is not probable any parasites had ever invaded them. They are probably individuals which have been diseased, or which have been less fortunate than their comrades in finding the supply of food which they required.

Sometimes also one or two very large worms may be found reposing in a nest of small and more lately hatched ones. These are evidently stragglers which have abandoned their own nest, and in wandering about, happening to come to this nest, have crowded into it to repose temporarily. The proprietors of the nest make no resistance to these intruders. Nor do we ever see these caterpillars show any unfriendliness towards one another. When one of them is annoyed in any way, it throws its head spitefully and with a sudden jerk from side to side, and when menaced with danger it holds its head upwards and remains stiff and rigid, or else it drops itself to the ground and there lies perfectly still, as though aware that if it moved its enemy would more readily discover it.

As the black cherry is the favorite of these insects it often happens that trees of this kind which stand solitary in the fields or along the fences, attract the female moths from all directions, and become greatly overstocked with eggs. A hundred nests may sometimes be counted upon a small tree. In such instances before the caterpillars are half grown every particle of foliage upon the tree is consumed and every bud is gnawed to its core. The small amount of succulent matter which continues daily to grow in the buds does not suffice to give a taste of food to a tenth part of the ravenous multitudes. The situation of the worms at such times is truly pitiable. Famishing and tormented with hunger and feeling that a mouthful of sustenance must and can somewhere be found to alleviate the cravings of their appetite, each worm hurriedly crawls for the hundredth time to the end of every limb and twig. The tree thus becomes carpeted over and the angles of the branches become filled with the cob-web-like threads which are spun in these numberless journeys.
At length driven to migrate elsewhere or perish from starvation, they leave the tree, one following the track of another, traveling in the direction in which they discern or suppose they discern other trees to be standing. If it is pasture land in which they are traveling, every stalk of clover, every dandelion leaf and other weed which they come to is examined to its summit in search of something which is edible. I once saw a heap of dry brush, every limb of which was overspread with the threads of a swarm which was thus emigrating, so little ability have they for discerning where food can be found. Their track may commonly be traced through the grass by the threads which they spin, to a distance of one or two rods, it gradually becoming less distinct as one worm after another has strayed away from it, impatient to find something wherewith to appease his hunger. Being already famished before leaving the tree it is probable that most of them perish before finding anything nutritious on which to feed. The cherry puts forth a scanty crop of new leaves after the worms have left it; and I have known trees to be totally defoliated three and four years in succession by these caterpillars, without being killed. But when thus assailed they grow but little, if any, and acquire a decrepit appearance from which they do not recover for several years.

The larvæ when they first come from the eggs are 0.08 long, slightly tapering, of a black color, the under side and legs pallid, and they are slightly clothed with soft gray hairs. After they commence feeding they show a pale ring at each of the joints, and a faint pale stripe lengthwise along the back upon each side of its middle, and another low down upon each side. The head is deep black, and some deep black dots may be discovered upon the body, from which the hairs arise. When they are a few days old and before the first moulting, they have increased to double their original size, and show some ash-gray or whitish lines more or less distinctly, running lengthwise upon the back and sides.

A worm which I confined by itself cast its skin the first time on the 6th of May, again on the 12th, a third time on the 15th, a fourth time on the 19th, and a fifth time on the 28th, being now an inch long. I think it would not have moulted again, but as it escaped from its confinement, a week after the last date, I cannot be certain upon this point.

After the first moult this worm was 0.20 long, of a dark gray color with two ashy-white lines along the back and two along each side, the space above the upper lateral line having a large blackish spot on each segment. The hind edges of the segments and the under side of the body was also pale ash
gray, the head velvety black, and the body was clothed with numerous ash gray hairs of different lengths.

After the second moult it was half an inch long and nearly cylindric, the head being scarcely any broader than the body. It was black and hairy, the neck with numerous long hairs directed forward and overhanging the head, which was velvety black. A broad dull blue stripe extended along the back and a narrower wavy brighter blue one along each side, with several short curved blue lines between them.

After the third moult it was three-fourths of an inch long, with yellowish white hairs, and stripes, &c., much the same as before.

After the fourth moult it was 0.95 long, of a velvet black color with numerous yellowish or fox-colored hairs, with a white stripe down the back and numerous short crinkled white lines on the back and sides; a large black spot on each side of each segment, in the hind part of which spot was a transverse oval pale blue spot having an impressed line across it; a second pale blue spot in the crinkled white lines below the black spot.

The full grown caterpillar is about two inches long and over a quarter of an inch thick, cylindriical, sixteen-footed, and thinly clothed with fine soft yellowish or fox-colored hairs of different lengths, the longest ones measuring a quarter of an inch. These hairs are rather more numerous upon the neck, where they project obliquely forwards, shielding in some measure the head, which is black and furnished with shortish black hairs. The body is of a deep black color. A white stripe extends along the back its entire length, commencing upon the second or the base of the first segment back of the head. In this stripe are numerous minute black dots. On each side of it ate a number of short crinkled irregular longitudinal lines, of a yellow color, which become paler down upon the sides. Above the lowermost series of these lines is a row of transverse oval pale blue spots, one upon the middle of each segment. On the anterior side of each of these spots is a broader deep velvety black spot, as it appears to the naked eye, forward of which is a rather faint pale blue oblong spot or short stripe, reaching to the anterior margin of the segment. Lower down the sides are mottled with the same tint of pale blue coloring, interspersed with short crinkled pale yellow or whitish lines. The under side of the body and the legs are black, the soles of the prolegs white. The neck or anterior edge of the segment next to the head is also white, with two small somewhat square yellow spots above.

Early in June, as these caterpillars approach maturity they lose their social habits and leave the trees on which they have been bred, wandering about and feeding upon whatever foliage they find that is palatable to them. Being now so large and well fed, they are able to travel considerable distances, and can sustain themselves on such a variety of plants that they incur little risk of suffering from hunger. For a number of days at this period they may be seen everywhere, on plants in our yards and gardens, or crawling along fences and upon the walls of buildings, and frequently entering our dwellings at the open
windows and doors. They still prefer the cherry and apple to all other food. One season on looking through an orchard of young apple trees at this time, I was surprised to find some of these caterpillars upon almost every tree. They must have come from considerable distances, as every nest in the orchard and its vicinity had been destroyed two or three weeks before.

It is for the purpose of finding secure retreats in which to form their cocoons that the caterpillars thus disperse themselves. The cocoons are mostly spun about the end of the first week in June. They are placed commonly in a horizontal position, in crevices in the rough bark of trees, on the lower edges of boards where they are nailed to the posts of fences, on the under sides of rails, in the corners at the lower side of clapboards of buildings, beneath the cornices, and in a variety of similar situations where they will be sheltered from the rain. They are held in their places by numerous loose crinkled threads on their outer surface.

The cocoons are oval, white or pale yellow, hardly an inch long and 0.40 in diameter. They are rather loosely woven, and so thin that the inclosed insect may be discerned through their sides. Their meshes, however, are filled with a kind of thin paste; which when dry crumbles to a fine powder resembling sulphur, which sifts from the cocoons when they are handled. The loose texture of the cocoon enables the moth when hatched to crowd itself out through one end of it, forming a large round opening therein, and giving to this end afterwards the blunt appearance shown on the left end of the above figure. The moth also discharges a colored fluid which wets and softens this end of the cocoon and thus facilitates the operation of working a hole through it; and this fluid also stains the orifice to a greater or less extent, making it a light tawny yellow color.

The chrysalis which lies within this cocoon is variable in its size, measuring 0.65 to 0.80 in length and about 0.28 in thickness. The accompanying figure will give the reader an idea of its appearance. Its surface is densely covered with fine short erect hairs, except upon the head and the sheaths in which the wings, legs and antennae are inclosed.
When first formed it is of a dull white color with the head pale green and a pale brown stripe along the back; but it gradually changes to a darker color, and the shell which remains in the cocoon after the insect has come from it is sometimes black and sometimes chestnut brown irregularly spotted and blotched with black.

Dr. Harris states that the chrysalis state of this insect lasts from fourteen to seventeen days. The specimen which Abbot bred was twenty-six days in its pupa form. Of nine early matured caterpillars which I had placed in a box the first formed its cocoon on the morning of June 2d; two others spun themselves up in the afternoon and two others in the evening of the same day, and the remaining four enclosed themselves the following night. The first moth was found in the box on the morning of June 23d, four more were found in the box the following morning, three more came out in the course of that day, and the remaining one that night. Three weeks thus appears to be the usual period that these insects repose in their pupa state.

The winged moths (see plate 3, fig. 3, 4) are of a dull reddish or fox color, different individuals varying in the depth of their coloring, the females (fig. 4) being often paler, approaching to grayish, and the males (fig. 3) often darker, sometimes brown with scarcely any tinge of red. The mark by which this species is most readily distinguished is two straight white stripes which extend obliquely across the fore-wings, parallel to each other and to the hind margin, dividing the wing into three nearly equal portions. The anterior stripe is often slightly broader than the posterior one, especially towards the outer margin of the wing. In some females these stripes are placed nearer to each other; and though commonly parallel, in some instances from the middle of the wing to the outer margin, or even through their entire length they diverge from each other. In the males they are less variable, but the space between them in this sex is frequently pale gray, and there are also numerous gray hairs on the basal portion, and a few towards the apical margin also. The hind wings are of the same color as the anterior ones, but without any pale marks. On their under sides the wings are the same color as above, and commonly a white band extends across both pairs near their middle, that on the fore wings being straight and widened at its outer end, that on the hind wings broader and curved. The fringe on the fore wings has a white alternation near the outer angle and another broader one on the middle; along the inner angle and on the hind wings it is white slightly varied in places with dull reddish. These colors of the fringe are much more distinct in the darker colored varieties of the male. The hairs with which the thorax is densely coated are often grayish. The stalk of the antenna is dull white and its branches are dark rusty red, sometimes with a whitish line on their outer side. The feet are white or yellowish.
white, particularly in the males. The wings when spread measure from 1.20 to 1.30 in the males, and in the females from 1.40 to two inches.

The following varieties may be noticed.

I. In the males.

a. The space between the bands on the fore wings pale gray. Common.
b. The bands undulated near their outer ends.
c. The basal outer half of the hind wings whitish.
d. The hind wings with a whitish band across their middle.
e. The whitish band on the under side of the fore wings wanting.
f. The whitish band on the under side of both wings obsolete or wanting.

II. In the females.

g. The bands on the fore wings unusually distant, the middle space of the wing wider than the hind space.
h. The bands unusually near each other, the space between them more than four times as long as wide.
i. The bands perceptibly diverging from the middle of the wing to its outer margin.
j. The bands slightly diverging through their whole length from the inner to the outer margin.

These moths are most numerous about the end of the first week in July. They pair and the females deposit their eggs within a day or two after they come from their cocoons. Thus the belts of eggs begin to be seen upon the twigs of the apple trees as early as the first of July. Like other insects of this group, these moths frequently enter the open windows of our dwellings in the evening, attracted by the lights. A dozen will sometimes come in thus, in an hour or two of a sultry dark night. It is readily known from other species at such times, by its motions. Dazzled and bewildered by the light, it darts crazily about, here and there, thumping against the table, the wall and the floor, and instantly rebounding it circles around the candle with Jehu-like velocity, till it blurs through the flame, nearly extinguishing it and singeing its horns and wings, when it is glad to withdraw to some obscure corner and there remain at rest.

This moth inhabits all parts of the United States. Persons who have removed from New-York to Illinois and Wisconsin inform me that they have these caterpillars in their orchards there, but that they are by no means so common as here at the east. Abbot remarks that in Virginia whole orchards are stripped of their leaves by them, but that in Georgia it is not very common. From the specimens of the moths which have been sent me from Mississippi and from the Indian territory west of
Arkansas, I should judge it to be common through the south western states. And it probably occurs over all those parts of our continent where the black cherry is a native tree.

Another caterpillar which has already been mentioned, named *Clisiocampa sylvatica* by Dr. Harris, or the Forest caterpillar, is so very similar to the insect we are considering, in its appearance and habits, that it merits a notice in this connection, but as I have not-enjoyed an opportunity for carefully noticing its history and transformations, I shall only allude to it briefly at present. It is most fond of the oak but it is also frequently met with upon the apple. Here at the north it is far less common than the other species, and I have only occasionally met with one of its nests, and with the caterpillars when they were wandering about in search of retreats in which to spin their cocoons. But in Virginia it is so abundant some years, according to Abbot, as to strip the oaks of their leaves. Among my neighbors it has the reputation of being more injurious to apple trees than the common species, as it not only consumes the leaves, they say, but gnaws the stems of the young apples, causing them to wither and fall to the ground.

These caterpillars build their nests against the side of the tree instead of in a fork of the limbs. The worm has the same form and size and is clothed with hairs similar to the common species, but may easily be distinguished from it by its color and stripes. It is pale blue tinged with ashy greenish low down on the sides, and is everywhere sprinkled over with black points and dots. Along the middle of the back is a row of white spots and on each side of these an orange yellow or tawny reddish stripe, and a paler cream yellow stripe lower down on each side, these stripes and spots being margined with black; and each segment has two elevated black points upon the back, from each of which arise four or more coarse black hairs. They are rather later than the common caterpillars in spinning their cocoons and in giving out the winged moths, and these moths resemble those of the common species, being of a cinnamon brown color, the fore wings paler or nankin yellow, crossed by two oblique straight parallel stripes of a rusty brown color, and the whole space between these stripes is in many specimens rusty brown.
The caterpillars which are seen wandering about, everywhere, the fore part of June, all disappear by the middle of that month, having wound themselves up in their cocoons. Straggling individuals, however, may be met with after this time. So late even as the fourth of July, when the winged moths are generally out of their cocoons, I have met with individual caterpillars still lingering upon the leaves of apple trees. Several of these late stragglers I have confined in boxes, deeming they might be infested with internal parasites. But in every instance they refused to eat, and have died within a few days and their bodies have become putrid, and no parasites were to be found within them when examined. Hence it is probable that all these late individuals are diseased and too debilitated to spin cocoons, and that they all perish. It will not therefore be worth while to give any care in destroying them when we happen to meet with them.

When the caterpillars disperse themselves abroad, a few remain upon the tree and continue to occupy the nest. These also appear to be diseased individuals which are too feeble to roam abroad like their comrades. And they eventually form their cocoons within the nest. Thus on tearing open old nests a few cocoons will almost always be found in them. Some of these yield winged moths, but the insects in most of them are destroyed by parasites. There are probably different species of Ichneumon-flies and kindred insects which prey upon and destroy the Lackey moth in its larva and pupa state. Sometimes a very small white cocoon not half the size of a grain of wheat, and of a texture like that of the silk paper on which bank bills are printed, may be found slightly attached to the outer surface of the cocoons of the Lackey moth. The insects make their escape therefrom by cutting one end of the cocoon nearly off and pushing it up like a lid. These small cocoons are probably formed by parasitic worms which feed upon and destroy the inmate of the larger cocoon and make their way out of its body as soon as they have attained their growth.

Many of these cocoons which are found in the old nests of the caterpillars have a large hole perforated in them near one end, this perforation also extending through the shell of the chrysalis. In July and the fore part of August a multitude of minute Chal-
idian insects of a deep metallic green and black color, may be found issuing from this orifice, being doubtlessly hatched from small maggots which have subsisted upon the chrysalis. Why the orifice is so much larger than is necessary for their exit I am at a loss to conjecture. These same insects may also be seen at the same time, walking around upon the exterior surface of the nests and the limbs and leaves around it. They appear to pertain to the genus Cleonymus of Latreille, as this genus is restricted and defined by Westwood (Synopsis of British Genera, p. 72) and by Brullé (St. Fargeau's Hymenopteres, vol. iv. p. 594), and this species may appropriately be named

The Lackey-moth Cleonymus (C. Clisiocampa). The males are about 0.09 in length to the tip of the abdomen and of the wings, and the females 0.11. The head and thorax are somewhat rough from numerous minute elevated points giving their surface a shagreened appearance. They vary in color from dull metallic green to black, being the former color commonly in the males, the latter in the females, with the face green in both sexes and sometimes with a golden yellow reflection. The abdomen is smooth and highly polished, black or purplish black, immaculate in the females, in the males with a large pal yellowish spot near the base above and beneath, varying in its size in different individuals, the sutures also being more or less marked with the same color. The antennae are black or dark brown, their long basal joint pale dull yellow, which is also the color of the legs the tips of the feet being black, and in the female the thighs are more or less dusky or brown. The wings appear whitish when closed and carried flat upon the back as they are when the insect is walking. When spread they are hyaline and glassy, their whole surface covered with minute punctures, each bearing a fine short hair. The stigma or short thick branch at the end of the rib-vein is slightly enlarged and triangular at its apex, the angle which is towards the outer margin being prolonged into an acute point, this stigmal branch being hereby curved on its outer and straight on its inner side. The thickened rib-vein is confluent with the outer margin about three times the length of the stigmal branch before giving off this branch. The antennae are eleven jointed, the joints beyond the first compacted and forming an elongated club, the third and fourth joints being much smaller than the others, the third but half the size of the fourth and often difficult to perceive. The second joint is longer than the fifth and following ones. The last joint is double the preceding. The male is more slender than the other sex and has the abdomen oval and convex above, its segments faintly marked by slender transverse impressed lines, the fifth segment being longer than the fourth. In the female the abdomen is broader than the thorax and has an ovate form tapering to an acute point. It is flattened above and strongly pro-uberant in the middle beneath.

In the old nests of these caterpillars, in August, the larva of a moth, probably of the family Tineidae, is common. It is a slender sixteen-footed soft fleshy worm over a third of an inch long
of a dull reddish color with a black head and neck. It subsists upon the old effete matters of the nest, or perhaps consumes the shells of the chrysalids after the moths or their parasites have come from them, for cocoons frequently occur from which these shells have disappeared.

For destroying these caterpillars a variety of measures are resorted to by different persons in all parts of our country. Whilst some of these are more or less efficacious others are puerile and worthless, and some do the worms more benefit than harm.

I have known persons to content themselves with simply thrusting a stick into the nest and tearing it asunder and knocking or shaking the worms to the ground, thinking that few of them would be able to find their way up the tree again and that at least a part of them would perish from starvation. Such persons have no correct conceptions of the distances which these caterpillars can travel and the variety of leaves on which they can subsist.

I have known other persons to tear open the nest and pour water into it till it was saturated, thinking this operation drowned the worms. And in former years I was myself accustomed to cut off the limbs containing nests upon the choke cherries in my meadow and throw them into the adjacent creek, supposing the worms would thus be drowned and become food for fish. I have since learned that in this act I was no more wise than the sages of Gotham when they sat about destroying an eel by drowning it. I have known one of these worms after being immersed under water two hours revive and crawl away on becoming dry. Nor is hot water more efficacious. Several nests of quite young caterpillars, through which water that was near the boiling point was profusely poured were next day found all alive and apparently unharmed by the operation.

I have sometimes poured soap suds into the nests and upon the worms when exposed upon the limbs and leaves. When wetted in this manner they shrink up and fall to the ground, dead as I have supposed, but I am not certain that none of them have revived again when thus treated. Some persons have used ley in the same manner, and this is undoubtedly more destructive. A swab charged with spirits of turpentine or with whale oil soap
and thrust into the nest, it is said will kill many of the insects and compel others to escape.

Burning the nests and thus destroying the worms when at rest within them, has been recommended. A very neat method of effecting this was given by Prof. Mapes at the meeting of the Farmers' club of New-York on the fourth of September last. It is to saturate the nest with a mixture of alcohol and camphene and set it on fire. I have not tested the efficacy of this mode, but, clustered together in a mass as the worms commonly are in their nests I should be fearful those in the inner part of the mass would not be killed by the transitory heat thus produced, since hot water fails to destroy them. Another method which has often been resorted to is to hold to the nest the muzzle of a gun lightly loaded with powder and discharge it. I have been informed that only a part of the worms are commonly destroyed by this operation.

Sulphur has been in higher repute and has been oftener resorted to in this country than any other remedy, for expelling caterpillars and all kinds of worms from trees. A hole is bored in the trunk of the tree to the depth of about six inches; this is filled with sulphur and a plug is inserted to retain it from being washed out by the rain or by sap flowing from the wound. This remedy obtained much currency from the experiments of the late George Webster of Albany, reported in the Memoirs of the Old New-York Board of Agriculture, vol. ii, p. 250, and extensively copied into other publications at that period. And like Mr. Webster, many others have become assured of the efficacy of this remedy, from the mere fact that the worms have all disappeared from the infested trees within a day or two after this measure has been resorted to. Now there is a peculiar liability to be deceived and misled, by experiments like this. The larvae of insects generally, become most voracious and make the greatest havoc, just as they are arriving at maturity. And as they are now grown to a larger size than they had previously been, they commonly are not noticed until this time. Having nearly completed their growth, they of course forsake the tree which they infest within a few days. Persons not conversant with the habits of these vermin, will hence suppose the remedy which they
have applied has driven them from the tree; whereas it is their natural habit to crawl from the tree at this time. Now in all cases like this it is an easy matter to conduct an experiment in such a manner that there can be no deception or mistake in the result. Obviously, if sulphur, applied in the manner stated, has any effect in rendering a tree repulsive to the worms infesting it, it is in consequence of its being absorbed and circulated in the sap to every limb and leaf of the tree. For the purpose, therefore, of ascertaining the effect of sulphur upon the apple tree caterpillar, I on the third of May cut off the limb of a wild cherry tree on which was a nest, the worms of which were a quarter of an inch in length, and inserted the but-end of this limb in a cup of sulphur slightly moistened with water—whereby the twigs and leaves would certainly become much more strongly impregnated with this substance than they ever can be from sulphur inserted in a hole bored in the trunk of a tree. A limb containing another nest was also cut off and inserted in a cup containing water only. These two nests were placed side by side in my office, where they would be subject to the same temperature and influences, except in the one particular specified. As the leaves upon the first mentioned limb became consumed by the worms, a fresh limb the but of which had been inserted in moistened sulphur during the twelve hours preceding, was placed in contact with it. Sulphur was also sprinkled upon a part of the nest. But the worms seemed to wholly disregard this, traveling freely around and over it, and soon inclosing it under the newly woven tissues of their nest. At the end of nine days the caterpillars in both nests were larger than any of those out of doors, the temperature of the office warmed by a stove upon chilly days and evenings, having evidently favored their growth. At this time, May 12th, the worms which had fed upon ordinary leaves were four-tenths of an inch in length; those which had subsisted upon leaves impregnated with sulphur were double their size, measuring 0.80 to 0.85. It was clearly apparent, therefore, that so far from being in the least degree prejudicial to them, the sulphur had rendered them more healthy and robust, rapidly accelerating their growth. And it hence is quite probable that those hundreds of persons in our country who
have spent more or less time in inserting sulphur in the trunks of trees infested with worms have hereby benefitted these vermin more than they have injured them.

Soap being so efficacious a remedy against some insects induced me to test its effects upon these. A nest of late caterpillars, only half grown upon the last day in May, were upon the limb of a small garden cherry, when I placed a band of soft soap around the limb, slightly below the nest. Several worms started out of the nest to feed, but each on touching its nose to the soap retreated back hastily into the nest. Three worms coming in from feeding, on touching the soap, turned about and crawled away from it, whereupon I placed a second ring around the limb, below them. On coming to this they again turned around, up the limb, and continued traveling backwards and forth from one barrier to the other, without attempting to pass either of them. My hopes were high that this substance would prove invaluable in combating these insects. Other rings quarantining more worms, were placed around other limbs, and a quantity of the soap was put in the forks of all the larger limbs. But, two hours afterward, the surface of the soap having become dry so as to give the worms a foothold, they were found everywhere traveling over and scarcely noticing it.

Next, to ascertain whether the alkaline matter of the soap would be absorbed and pass into the circulating juices of the tree and impregnate the leaves sufficiently to render them unpalatable to the caterpillars, the main trunk of the tree from near the ground to the limbs, a distance of five feet, was profusely coated over with soap, and some of the larger limbs were also rubbed with it. A slight rain coming on aided in washing this substance into the small crevices of the bark. But I could not discover that it had any effect upon the worms. They continued to feed and to thrive upon this tree. A fortnight afterwards, when the caterpillars had almost universally forsaken the trees, a few were still remaining upon this tree. And I may add that the leaves of this tree after the soap was thus copiously applied to it, appeared as much infested with the black aphides or cherry plant lice described in my First Report, as were the leaves of other trees around it. It thus appears that this sub-
stance is not such a sovereign prophylactic against all insects upon fruit trees as the observations of some of our most successful fruit growers have led them to suppose. And there can be no doubt that in this as in the higher classes of animals, what is poison to one may be meat for another.

There are two measures only which we can confidently recommend, whereby to subdue these insects and save the fruit trees from defoliation by them. And these universal experience concurs in pronouncing the only efficient and reliable measures to which recourse can be had.

The first of these is destroying the eggs. This must be attended to in the winter or early in the spring before the leaves begin to put forth. As this is a period of the year when other avocations leave us comparatively at leisure, it is economy to accomplish now whatever can be done which will diminish the demands upon our time during the busier parts of the year. And every cluster of these eggs which can be discovered can be much more easily and speedily destroyed than a nest of caterpillars can be exterminated at a later date. The orchard should therefore be carefully passed through at this time and the ends at least of all the lower limbs should be examined. And for this work it is necessary to call into exercise the sharpest scrutiny which we are able to give, for despite of our utmost care some of these clusters will elude our search. A practised eye will detect the unevenness or swelled appearance of the twig where these eggs are placed, much more readily than that of a novice. They are sometimes at the very end of the twig, sometimes one or two feet from its extremity, and not unfrequently two belts of eggs occur upon the same twig. The eggs are to be gathered either by cutting off the twig to which they are attached or by breaking and tearing them from the twig. They should be carried to the house in a basket and thrown into the stove, for if merely dropped upon the ground the worms will afterwards hatch from them and many of these will be apt to find their way to some tree or shrub on which to subsist. There perhaps has never been more urgent necessity for a universal resort to the measure now specified than there will be the coming winter, the trees being stocked with eggs at the date when these pages are
going to the press, to an extent never before known. Persons who have never seen these eggs upon their trees hitherto, now notice them frequently, notwithstanding the trees are in full leaf. And should the season prove favorable to them, and no artificial destruction be had recourse to, our orchards bid fair to be stripped of their foliage next year to an extent never before paralleled.

But, as already stated, notwithstanding the most searching scrutiny, many of these clusters of eggs will escape notice, particularly upon the higher limbs of the trees. The proprietor of an orchard, therefore, is often vexed, after entirely ridding his trees of the eggs of these insects, as he supposes he has done, to find nests of caterpillars appearing upon them when the leaves are beginning to put forth. A second measure, the destruction of the caterpillars, therefore becomes necessary. And certainly the most expeditious and effectual method for accomplishing this is to crush them when they are gathered together and reposing in their nests. Practical orchardists are quite unanimous upon this subject, although in killing the worms there is some diversity in their practice. The best method is that stated by the late Willis Gaylord: "With a suitable ladder and a pair of stout mittens, if you are fastidious about using your hands, * * when the worms are all in their web, at a single grasp every occupant may at once be destroyed." (Trans. N. Y. State Agric. Soc., vol. iii, p. 153.) Those, however, who are at all squeamish in encountering work of this kind, which it must be confessed is more agreeable when done than when doing, prefer tearing the nest from the tree and trampling its contents into the earth beneath the sole of the boot. By thrusting a stick or pole through the nest as low down in the fork of the limbs as possible, and then raising it outwards, nearly the entire nest and its occupants can be removed from the tree, when there are no small lateral limbs growing within the fork to catch and retain portions of it. Others thrust into the nest a cylindrical brush constructed by the manufacturers for this purpose, or the top of a dry mullen stalk, attached to a pole for those nests which are high up in the tree, and turning it about in such a manner as to wind the nest around it, by pressing and rubbing it against the limbs, hereby
crush most of the worms, and complete the work by returning to the nest on a subsequent day and repeating this operation. Whichever of these methods is adopted, the work is in all cases the most easily performed and the least disgusting, when the worms are young and small. It should therefore be done early in May, as soon as the white nests, appearing like cobwebs in the forks of the limbs, become sufficiently conspicuous to be readily seen. The worms of some nests will be out, feeding, at the same hours when others are resting within their tents. They are more universally in their webs in the morning than at any other time. But days during which there is a slight sprinkling rain are probably the best for this work, as the worms are then all in their nests, as a general rule, and are more torpid and less apt to crawl away; though the nests when wet are not so easily discovered. Often, too, when from the number of worms reposing in the nest we imagine the whole of the brood is there, a portion of them are in reality absent, engaged in feeding. Thus it frequently happens that when we suppose we have entirely exterminated a nest, on returning to it a few days afterwards we are surprised to find it rebuilt and quite a number of worms inhabiting it. In order therefore to entirely destroy these pests, it is necessary to go through the orchard repeatedly. And every owner of an orchard should make it a point to wage a war of extermination against these insects, annually. Not the fragment of a nest which is accessible should be allowed to remain. The rich green foliage in which the trees will be clad when released from this most common enemy, and the quantity and fairness of the fruit which they are then enabled to grow, will amply repay the care which is thus bestowed upon them. Within the circuit of my own observation I presume one-half the owners of orchards give no attention whatever to the caterpillars which yearly invade their trees. Most of them are men of such strict economy they think they cannot afford to spend their time in such trifling work as destroying these worms' nests. Now it requires but a few moments, with a suitable ladder, to mount into a tree and with one hand covered with a buckskin mitten, crush every worm in the nest there. Ten of these nests can thus be destroyed with ease in an hour. Each of these nests contains
about three hundred worms, and each worm, as already stated, devours two leaves daily. Six hundred leaves are each day stripped from each tree on which there is one of these nests. An hour's labor therefore saves to the orchard six thousand leaves daily, for the space of two or three weeks. Where else can an hour's labor be so profitably devoted as in destroying these worms? Surely men who are such close economists, when they are apprised of these facts, will never allow one of these nests to remain upon their trees for a single day.

Some persons do not allow any wild cherry trees to grow on their lands, in consequence of the numbers of these caterpillars which they breed. But the orchards of such men are probably about as much infested with these insects, coming in to them from the fields and forests of their neighbors, as they would be were wild cherries growing upon their own lands. And valuable as the timber of this tree is for cabinet work, we cannot recommend its extermination. It appears to be the young, thrifty growing trees of this species which are the especial favorites of these insects. Large old trees are rarely infested to a great extent, especially when trimmed of their limbs to a considerable height from the ground. And even if every wild cherry tree in our country was cut down and not a caterpillar's nest was tolerated in any of our orchards, these insects would continue to sustain themselves, though no doubt in greatly diminished numbers, upon the other species of cherry and upon the thorn apples and other trees and shrubs on which they are able to subsist and thrive.

As the wild black cherry is so much preferred to the apple or any other tree by these insects, and as it is easier to destroy a hundred nests upon one tree than a quarter of that number where they are scattered upon different trees, it strikes me that this tree may perhaps be turned to a valuable account as a decoy for these insects. If one or two cherry trees are standing in the fences on each of the sides of an orchard, the eggs of these insects it is probable will nearly all be deposited upon these trees which otherwise will be scattered over all the trees in the orchard. These trees can be kept trimmed and headed down so that all parts of them will be readily accessible. The ends of
the limbs, moreover, are so much more slender, long and straight than those of the apple tree, that the eye detects the belt of eggs upon them far more readily than upon the latter tree. Hence a hundred clusters of eggs or a hundred caterpillars' nests upon a half dozen cherry trees on the outer edge of the orchard can be exterminated much more easily than half that number upon forty or fifty apple trees within the orchard. And the work when brought within so small a compass can be much more completely accomplished, leaving nothing to produce a crop of these vermin another year, except what straggles in from the surrounding premises of shiftless neighbors. Every reader will perceive the plausibility of the measure now suggested; but it is only after testing it by carrying it into practice, that we can know with certainty whether it will fulfill our expectations.

Eating the leaves, in July; a slender caterpillar with pale yellow hairs and tufts and black pencils, its head and two small protuberances on the hind part of the back bright coral red.

In winter, clusters of white eggs and a dead leaf adhering to a whitish cocoon attached to the twigs or limbs.

The American Vaporer moth, Orgynia leucostigma, Abbot and Smith.

The term "caterpillar" is applied to a worm which is clothed with hairs; and we commonly associate this term with something which is ugly and repulsive in its appearance. But many caterpillars are far from meriting this prejudice, being in reality objects of much beauty. This is eminently the case with one which may frequently be seen in the month of July upon apple trees, and also in our yards upon rose bushes. We cultivate the rose for ornament; and nature, as if to further our designs, places upon the leaves this neat prim little caterpillar, which is a more delicate, elegant object than the handsomest rose that ever grew. I well remember the first time I noticed one of these caterpillars. It was in the hay-field, in my boyhood. One of the laborers, who had little taste for any of the beauties of nature—a man of that class of whom the poet sings,

"The primrose growing by the river's brim
Is but 'A yellow primrose'—nothing more—to him"—
in stooping for a handful of grass to wipe off his scythe, had his attention arrested by one of these caterpillars. Taking up the [Assembly, 215.]
leaf on which it was standing, he was for several moments absorbed in contemplating its bright colors and the artistic arrangement of its elegant plumes. Then, as he was laying it down he said to himself, "That is the prettiest thing I ever saw!". Let us not murmur, if the leaves of our rose-bushes are somewhat gnawed and eroded, when they hereby produce for our admiration objects far more beautiful than we look for them to yield.

These caterpillars are an inch or more in length, slender, sixteen-footed, and have the skin of a cream yellow color with a black stripe along the middle of the back and a broader brown or black one upon each side. The body is thinly clothed with pale yellow hairs which radiate from small wart-like elevations, and in a row on the fore part of the back are four brush-like tufts of a deeper yellow color. On the hind part of the back are two little knobs or bosses of a bright coral red color, or like sealing wax, and the head is of the same color. Projecting upward from the hind end of the back like a camel's hair pencil is a bundle of long black hairs, and inclining forward and outward from each side of the neck is a similar pencil. The hairs of these pencils are minutely bearded through their whole length, and each hair has a small knob at its end, which is formed of a tuft of minute bristles. The pencils have a jointed appearance, from their hairs being in sets of different lengths. The yellow hairs are also bearded, but have no knobs at their ends.

I have, on willows and on basswood met with caterpillars differing from the preceding in having the head yellow, no red knobs upon the back, a black spot behind each of the brush-like tufts except the first, and beyond these a deep yellow instead of a black stripe, and no brown stripe along the sides. Whether these are a distinct species, or only a variety, I am unable to say, two individuals which I reared having proved to be wingless females.

These caterpillars do not associate together in companies, nor form any web for their protection, but live solitary, exposing themselves openly upon the leaves and in the glare of sunlight, as if they thought that no creature would have a heart to injure anything so pretty as they are. They eat irregular notches in the margins of leaves, and where they are very numerous they consume the whole of the leaf, leaving nothing but the mid-vein. They feed upon many different kinds of trees, the elm, the maple, the horse chestnut, the oak, &c., but they appear to be most fond of the apple, the plum, the rose, and other perennials belonging to the Family Rosaceæ. They attain their growth and spin their cocoons mostly during the latter half of the month of July. The cocoons are attached to the twigs and limbs of trees, and sometimes to the leaves, and also to the posts and rails of fences, it probably being some of those caterpillars which are to produce male moths which select the latter situations. The cocoons are
formed of whitish silken threads so loosely woven together that the enclosed chrysalis can often be seen. They consist of an outer and an inner covering or tunic. The outer covering is commonly formed in part of two leaves, which are bent and tied together in such a manner as to make a kind of roof, sheltering the cocoon from rain, the lower leaf being overlapped by the lower edge of the upper one. There is considerable diversity, however, in the mode in which the leaves are attached to the cocoon. Sometimes they are drawn around it in the form of a cone with its point upwards. Sometimes but a single leaf is used. I once met with one of these cocoons upon the upper surface of a butternut leaf, the sides of which were drawn upwards so that the leaf formed half of the exterior portion of the structure. And as if the worm was aware of the brittle attachment of the leaf to the main stem, and was conscious that its own weight added to that of the leaf would inevitably cause it to break off and fall should a gale of wind arise, it had spun several threads to the main stem, thus securely tying it thereto. It is impossible for us to conceive how this worm came to possess such knowledge. The main stem would have fallen with the fall of the leaves in autumn. This cocoon produced a male moth. The female caterpillars undoubtedly place their cocoons, in every instance, where they will remain upon the tree through the winter; whilst the males are indifferent in this matter, caring for their safety only for the short time they remain within them. This is a signal instance of the harmony of nature, as will appear when we come to see where the eggs of the female are deposited.

Woven into the cocoon are numerous black and pale hairs, derived from the body of the caterpillars; and the remains of plant-lice are sometimes interspersed, probably from these stupid creatures having wandered over the cocoon at the time of its construction, and becoming inextricably involved in its meshes. The cocoon is about an inch and a half long. The inner tunic is but half the size of the outer, the space between being occupied with single threads crossing each other in every direction, and with the shrivelled remains of the caterpillar lying in the lower end. This inner covering is a closed sack of a regular oval form,
smooth on its inside, and a little larger than the chrysalis which reposes within it. The cocoon is placed indifferently either in a perpendicular, an oblique, or a horizontal direction.

The _chrysalis_ is of an oval form, twice as long as broad, measuring from 0.60 to 0.70 in length. It is rounded anteriorly and drawn out into a little horn-like point at its hind end, furnished with minute hooks at its tip, which are fastened into the threads of the cocoon. It is of a brown color with pale clouds and the under side of the abdomen whitish. Sometimes it is black and shining, with scarcely any traces of whitish. Upon the head back and sides it is thickly covered with rather long fine white hairs. The three anterior segments next to the head have each upon their middle, above, an oval or square transverse spot of a pale clay color, formed of scales which resemble little collapsed vesicles or bladders, and each of these spots is crossed by a slender line upon its middle. The wing-sheaths appear to be of the same length in both the sexes, reaching to the anterior edge of the first abdominal segment. On breaking open a female chrysalis, its inside is found filled with eggs which appear to be grown to their full size.

In each instance when I have bred these insects, the moth made its appearance on the thirteenth day after the cocoon was spun. It therefore begins to appear abroad upon the wing about the first of August. We sometimes, however, meet with the chrysalis unhatched in the cocoon in the winter. These are doubtless individuals which have been later in completing their growth and from which moths will be given out early in the following spring. From the gay appearance of the caterpillar one would expect a very pretty moth to be produced by it, and will be disappointed on obtaining a dark sooty brown thing, little variegated with spots or streaks. These moths may sometimes be seen resting upon the door posts or the shady side of buildings, with their fore legs stretched out in front, and their antennæ elevated. They frequently enter open windows in the evening, attracted by the light. They fly also in the day time. Their mode of flight is peculiar, consisting of short jerks or in a flitting manner. This has probably obtained for insects of a similar kind which occur in England, their common name, vaporer moths, a term indicating something of a volatile, peevish, hysterical disposition. They pertain to the genus _Orgyia_ in the family _Arothidae_ and order _Lepidoptera_, and this species is named _leuco-stigma_ or the Pale vaporer moth, in the splendid work of Abbott and Smith upon the Insects of Georgia, plate 79. The epithet "pale," however, is inappropriate for these moths as they occur
in the State of New-York. Indeed the specimens which I meet with in Washington county, fifty miles north of Albany, are so uniform in their characters, and so unlike the insect figured and described by Abbott and Smith that I should deem them a distinct species, were it not that the caterpillars, which are so peculiarly colored and clothed, appear to be identical with those of Georgia, and specimens of the moths from the vicinity of the city of New-York are intermediate in their marks, between the more northern and the Georgia insects, thus indicating that there is a gradual transition from the one to the other.

The winged moths as they occur in the Southern States, appear from the representations given, to be of a pale gray or ash color, the fore wings with a white crescent near the inner hind angle, and crossed by two conspicuous curved black bands, the hind one of which and the black spots upon these wings are nearly as in the following variety.

The intermediate variety (O. leucostigma var. intermedia) which occurs in the southern part of New-York measures about 1.40 across the extended wings. The fore-wings are ash-gray, their basal third smoky brown, paler on the inner side and crossed by a faint wavy pale band, which is confluent outwardly with an ash-gray cloud which extends from this band to the base. A blackish crinkled band commences on the inner margin behind the middle, running inward and then curving backward, till it approaches the outer edge, when it abruptly turns forward almost at a right angle and extends straight in an oblique direction more than the tenth of an inch to the outer edge. In the middle of the pale gray space forward of this band is a slender black crescent having some resemblance to the letter L, with a dot between it and the outer margin, a slender black line sometimes reaching with a curve from the crescent to the dot. The wing back of the band is pale smoky brown, except towards the outer margin, where it is pale gray, with a rhombic black spot on the margin immediately behind the band, this spot being cut across longitudinally by a slender gray line. Inside of this spot and much nearer the hind edge are two smaller blackish spots or streaks. Near the inner hind angle is a large white comma-like dot having its tail towards the inner edge. From this dot a pale streak often extends across the wing, parallel with the hind margin. The fringe is smoky, crossed by pale lines at the tips of the veins.

In the northern variety (O. leucostigma var. borealis) which is met with in the more northern sections of the State, the wings when spread measure from 1.20 to 1.30. Both pairs are alike in color, being dull smoky or dingy brown. The upper ones have a large ash-gray patch on the middle of the outer margin, which commonly extends to the tip, and is crossed by an oblique blackish streak, which is all that can be perceived of the band noticed in the preceding variety. Immediately back of this is a blackish spot, commonly of a rhombic form and sometimes crossed by a pale line. The base of these wings is somewhat clouded with ash-gray; and near the inner hind angle is a roundish white spot which is sometimes faint and almost effaced. Sometimes a row of small dark brown crescent-shaped spots is perceptible along the apical edge at
the base of the fringe. The specimens which I have gathered in Washington county have uniformly been of this variety.

The antennae of these moths are about a third of the length of the wings. They are gray, with a double row of dark brown branches resembling the teeth of a comb. Each branch has a row of very fine hairs, like eye-lashes, along each side, and at its tip three bristles, one of which is much longer and directed inward towards the head. The body is gray, with a small black tuft near the base of the abdomen. The under side is paler and the legs are varied with blackish.

It is the male insects which we have described above. The females are totally different objects, to appearance, being destitute of wings, and having in place of them two small scales the tenth of an inch long and half as broad, situated upon each side of the thorax. The vaporer moth therefore is analagous to the canker worm in this respect, the females in both species resembling worms more than perfect insects. The body of the female vaporer moth is short and thick when it first crawls from the cocoon, and longer and more cylindrical after the eggs have been deposited, being over half an inch long and a third as broad. It is of an ash-gray color from the hairs with which the body is densely covered, and often a broad dusky stripe runs the whole length along the middle of the back. The colors become more dull and obscure after the eggs are deposited. The antennae in this sex are short and not branched as in the males, merely presenting a row of saw-like teeth along their inner side, each tooth having a short bristle at its apex.

The females merely crawl from the inner to the outer side of their cocoons, and there remain awaiting the approach of their mates, who invariably find them immediately. The instinct of the males for discovering the opposite sex is remarkable; and collectors are accustomed to avail themselves of it for obtaining specimens. By placing a box in which a newly hatched female is enclosed, in the haunts of this species, dozens of males will sometimes be attracted to it. Thus the females commence depositing their eggs often within a few hours after they have left the chrysalis state. The eggs are from one to two hundred in number, about the size of a mustard seed, white and round with a small depression in the summit. They are placed upon the cocoon from which the female came, and are enveloped in a large quantity of frothy, milk-white, viscid matter, causing them to
adhere securely to the cocoon and to each other. They are extruded in a continuous string, which is folded and matted together so as to form an irregular mass. I once pierced one of these females with a pin while she was in the act of depositing her eggs; and so tenaciously did she adhere to them that for a time it was uncertain whether the body would not tear asunder before it would separate from the string. Within a day or two after she comes out of the cocoon the female has completed her labors. Her body which was at first plump, swollen and unwieldy, is now shrunken and flaccid, and she is so exhausted that she soon lets go her foothold, falls to the ground and perishes. The designs of nature in giving to these insects the habits which they possess are very evident. Having no wings by which to escape when menaced with danger, were these worm-like females to crawl about the limbs and trunk of the tree, as the canker worms are accustomed to do, their pale gray bodies would cause them to be discovered and devoured by birds. The canker worm runs no risk of this kind, as it makes its ascent in the winter and early spring when the birds are all absent upon their migration to a warmer climate. The vaporer moth, coming out in August, by remaining stationary upon its light colored cocoon, is but little liable to be noticed. Still, there being even here some risk of its discovery, it hastens to fulfill the purpose of its existence immediately upon coming out of its cocoon, lest some mishap should befall it if it were to remain longer in this exposed situation.

The white frothy matter with which the eggs are covered becomes dry and hard and impervious to wet, thus protecting them through all the storms and vicissitudes of autumn, winter and spring. Nor will a bird be inclined to pick off and devour these eggs with this foam and the hairs of the cocoon adhering to them. They are thus shielded from harm although placed in such an exposed situation, until the return of warm weather brings out a crop of leaves for the subsistence of the worms; whereupon they hatch from the eggs, early in May, and grow up till they become the gay caterpillars which we first noticed above.

But though the vaporer moth is able to guard itself and its progeny from destruction in several directions, it is not thus
fortunate in other particulars. It is exposed to the attacks of parasites. These are minute bee-like insects pertaining to the Family Chalcididae in the Order Hymenoptera. They puncture the skin of these pretty caterpillars dropping an egg therein, from which hatches a minute maggot which feeds internally upon the fatty matter of the caterpillar, thus exhausting and eventually killing it. I once gathered two of these caterpillars which I placed with some leaves in a box. Two days afterwards one of them was found to be dead, and the other being lively and vigorous was removed to another box. Next day, what appeared to be the ends of little worms were seen protruding from the body of the dead caterpillar. Upon the following day these worms were found to be seventeen in number. They had all left the dead carcase of the caterpillar and just above it upon the side of the box they had arranged themselves in a circular row, and had changed to pupae of a milk white color, 0.12 long and half as broad, hanging by their tails with their heads downward and their backs against the side of the box. This was upon the last day of July. Next day they had changed to a pale red color and had somewhat shrivelled, each having discharged a little cluster of clay-yellow grains which were adhering to the side of the box at the tip of their bodies. They subsequently altered to a black color, and on the sixth of August they hatched the winged insects, which were of a brilliant brassy green color, with a blackish purple abdomen and white legs, and about the same size as the pupae. In an account of the vaporer moth which I published in the Country Gentleman in reply to enquiries respecting it from some of the subscribers of that paper, I named this insect (vol. vii, p. 235) the vaporer-moth parasite (Trichogramma? Orgyia).

This parasite measures 0.12 to the tip of its abdomen, the wings being slightly longer. The head is brassy green, as broad as the thorax, three or four times as wide as long, and appearing slightly notched in front when viewed from above. The antennæ are brown, the basal joints pale yellow. They are composed of six very distinct joints, of which the first is long and forms an elbow with the following ones. The second joint is smallest; the fourth and fifth are equal, oval, and shorter and thicker than the third; the last is broader than the preceding and longer than the third, and is shaped like an elongated egg. The thorax is brassy-green and finely shagreened, twice as long as wide, broadest across the middle, the collar of a crescent shape and separated by a very distinct suture, the scutel large, pro-
VAPORER MOLHS—PARASITES.

217

minent, rounded, tinged with golden-yellow, with an elevated line on each side at its base, extending obliquely forward and outward upon the thorax. The abdomen is purplish-black, very smooth and polished, shorter than the thorax, short cylindrical with rounded ends, depressed above and in the dried specimen deeply excavated and boat-like. Near its base is a pale yellow band occupying the apex of the basal segment above and beneath, and nearly or quite interrupted upon each side. The legs are yellowish-white, including the anterior hanchest, the tips of the feet being black. The shanks are without conspicuous spines at their tips, and the feet are composed of four cylindrical, nearly equal joints, each joint having a coarse bristle at its tip on the upper side. The wings are clear and glassy, with numerous minute punctures except upon the basal part, each puncture yielding a fine bristle. A broad glabrous stripe extends along the inner margin of the fore wings, in which is a single row of equidistant punctures and bristles. The fore wings are destitute of veins, except one robust one of a pale color near the outer margin, which unites with the margin through about one-fourth of the length of the wing, separating from it again towards the tip, where it ends in a short branch or stigma which is slightly thickened and notched at its apex.

Another parasitic insect, so much like the preceding in all its details that it might be regarded as its brother reared at the same table, I met with upon rose leaves in September last, where it was very probably searching for these same caterpillars in which to deposit its eggs. In the Country Gentleman this was named

The Brother Parasite, (Trichogramma fraterna.) It is 0.10 in length and its wings when extended are 0.15 across. The thorax is much less rough than in the foregoing species, being very minutely shagreened and the abdomen is of the same brilliant brassy-green color as the thorax, without any pale spot or band towards its base, its under side being black. The sub-marginal vein of the fore-wings is also black, and is united with the margin two-thirds of its length, with the stigmal branch quite short and more conspicuously notched at its end. In all other respects the description given of the preceding species applies to this also.

By these parasites, and probably other means of which we are yet in ignorance, the vaporer moths of our country are crippled and restrained from becoming so numerous as they otherwise would be. In the vicinity of my residence I have never known them to be sufficiently multiplied to merit any attention on account of the depredations they commit. I should judge I had never met with a half dozen of the caterpillars in any one year, until last summer (1855), when they were noticed as being unusually common. This is probably near the northern extreme of their geographical range. In districts farther south and east, where the climate is warmer, they are much more numerous and
are frequently quite a nuisance. How pernicious they are upon fruit trees, even when their numbers are not excessive, is sufficiently shown in a communication from H. B. Ives, of Salem, Mass., published in Hovey's Magazine, vol. i, p. 52. Mr. Ives removed all the eggs of these insects from three of his apple trees. He found twenty-one clusters of eggs upon these three trees. The rest of the trees in his orchard he left untouched. The eggs hatched and the young worms had commenced their ravages upon the tenth of May. He watched them "from time to time, until many branches had been spoiled of their leaves, and in the autumn were entirely destitute of fruit; while the three trees which had been stripped of the eggs, were flush with foliage, each limb without exception, ripening its fruit." Dr. Harris states (Treatise, p. 283) that these caterpillars were quite abundant in the vicinity of Boston in 1848, '49 and '50; and that the horse-chestnuts planted beside the streets and in the parks of that city—trees which are so little liable to be attacked by insects—were almost entirely stripped of their leaves by them.

Fortunately it is an easy matter to exterminate these insects from the trees which they invade, by picking off and destroying their eggs. These are readily found during the winter, the dead leaf adhering to the cocoon to which the eggs are attached, being conspicuous upon the naked twigs. Sometimes, though very rarely, little clusters of dead leaves will be met with adhering to the limbs of fruit trees, which have not been tied there by the vaporer moth, but by another creature belonging to this division of the animal kingdom. The careful orchardist will hereby, when gathering the eggs of the vaporer moth, be sometimes deceived, and put to the trouble of mounting into a tree and bending a limb towards him, by this impostor; though from the greater number of the leaves, their more dull and decayed appearance, and their being more loosely tied together, making a rattling noise when agitated by the wind or by shaking the limb, the cheat will generally be known at a distance of several feet. These counterfeit clusters of dead leaves originally formed the nest of a Palmer worm (Chatochilus pometellus) or some other worm having the same habit of drawing several leaves together
by cob-web like threads, around the little web within which it dwells. This is evident from the leaves as we see them in winter, being worm-eaten and having the castings of the worm, in the form of dry grains, still adhering to them. But the threads by which such worms tie the leaves together are so slight and fragile, that the leaves forming their nests are all torn off and dispersed by the storms of autumn. In some instances, however, it appears that after the worm has evacuated this abode, another tenant takes possession of it, finding it to be the very situation which he desires for his winter quarters. This new occupant is a small spider, which ties the leaves anew, with threads of its own, numerous threads being woven together, forming a narrow fillet or ribbon which is so strong that although the leaves flutter and rustle with every breeze, they are not torn away by the most violent winds of winter. And within the leaves this spider forms for itself a little oval cot of soft silken threads of snowy whiteness and matted densely together, within which as in a bed of down, it reposes through the winter in comfort and security.

This spider is very closely allied to an Alabama species, named *Epeira displicata*, by Prof. Hentz in his valuable monograph of the spiders of the United States, published in the Boston Journal of Natural History, (vol. v. p. 476.) It however is sufficiently distinguished from that species by wanting the impressed black dots on the anterior part of the abdomen, and by its colors. In allusion to the circumstance which will probably cause this minute object to be most frequently noticed, I propose to name it

The Deceiving Spider (*Epeira decipiens*). As it occurs in its nest in the winter season, this spider is 0.12 long, and of a pale brown color, reddish brown beneath, the head and legs being paler brown or yellowish horn colored, sometimes with a greenish tinge. The abdomen is nearly globular, slightly depressed, and is surrounded horizontally with a whitish band. Posteriorly upon the upper side of this band is a row of six large equidistant black dots, each of which is encircled with a pale yellow ring. Behind the two posterior dots are two very minute ones, which are encircled in the same manner. The spinnerets at the tip of the abdomen are olive green. There are traces of two white cloud-like stripes along the middle of the abdomen, and in a particular reflection of the light it appears to be crossed by imperfect white bands. The legs are furnished with blackish bristles. As in several of the other species of this extensive genus the two upper or posterior eyes are largest and are almost in contact with each other, and the two outer ones upon each side are conflu-
ent, forming but a single dot, which is slightly elongated. When preserved in balsam of fir this spider retains the black dots and pale rings and band, but the abdomen changes to a bright blood red and the thorax and legs to a honey yellow color.

In a few other instances dead leaves will be found upon the apple and other trees during the winter; but these are chiefly single leaves at the tip ends of the twigs, which had withered prematurely from being infested with plant lice, and will not be liable to be mistaken for the work of the vaporer moth. One of the most remarkable pieces of mechanism may be met with upon the sycamore or button wood, where the dead leaf is drawn together in such a manner as to form a little wheel, whirling around and sliding up and down upon the last joint of the twig, the bud at the end of the twig forming a knob or button which prevents this wheel from sliding off its axle, and a tube or socket in its centre the fourth of an inch long serves as a hub, preventing it from turning askew. It appears to be an insect, perhaps a species of plant louse, which draws the sycamore leaf around the twig in this truly curious manner.

Care should be taken to rid fruit trees especially from the vaporer moth; for whenever one of these insects takes up its abode upon a tree, a part at least of its progeny will be apt to remain for several generations, sustaining themselves at the expense of the tree. In the winter, or before the foliage puts forth in spring, search should be made for their nests of eggs. They will be much more readily discovered than those of the common caterpillar. Occasionally a cocoon will be met with having no eggs upon it. In this the chrysalis is still lying unhatched, or a male moth has been given out from it. It will be the safest course to strip the trees of all the cocoons found upon them, whether covered with eggs and foam or not, tearing them off from the larger limbs and cutting off the smaller twigs to which they are attached, and throwing the whole into the fire. No one but the veriest sloven will permit his fruit trees to be depredated upon by insects which can be so easily subdued as the vaporer moth.
A pale yellowish green worm having a dusky or blackish stripe along each side of the back with a narrower whitish stripe on its upper side and a dusky line in the middle, and a shining yellow head, the hue of beeswax; residing in worm-eaten leaves drawn together by silken threads, and when jarred, dropping and hanging in the air suspended by threads; appearing the latter part of June, at times excessively numerous.

The Palmer-worm, *Chnestochilus pometellus*, Harris, (Plate 4, fig. 4.)

Though not abundant, this worm is common upon the leaves of orchards and forests, making its appearance every year about the middle of June and continuing till the last of the month. But it sometimes becomes multiplied in a most astonishing manner, appearing suddenly in prodigious numbers over a vast extent of country, in a single day changing the green foliage everywhere to a withered brown hue, as though it had been scorched by fire. And after continuing a week or two it disappears as suddenly as it came, so that on a tree which to-day contains hundreds of these worms, to-morrow not one can be found. And the following year when the same season comes round and we are looking for multitudes of these insects to make their appearance again, no traces of them are to be seen.

As this worm comes forth nearly a month later in the year than the apple tree caterpillar spoken of in the foregoing pages, it is much more destructive to the trees. When their foliage is stripped off and destroyed by this worm, only a slight crop of leaves puts out upon them after it disappears. Old trees and many of the limbs upon young thrifty trees die; and after a visitation of these worms, should the weather during the month of July prove to be dry, and hot, as it frequently is, the damage is much more extensive, whole orchards and forests perishing.

At a former period when the surface of our country was covered with one continuous forest it must have been a singular and sad spectacle to see the timber over such vast districts all blighted and leafless, as it doubtless was at times, from having been overrun by these worms. It is most probably these insects to which the Sweedish naturalist, Kalm, in his travels through this country a century ago, alludes in the following passage, (vol. ii, p. 7.) "There is likewise a kind of caterpillars in these
provinces, which eat the leaves from the trees. They are innumerable in some years. In the intervals there are but few of them: but when they come, they strip the trees so entirely of their leaves, that the woods in the middle of summer are as naked as in winter. They eat all kinds of leaves, and very few trees are left untouched by them; as, about that time of the year the heat is most excessive. The stripping the trees of their leaves has this fatal consequence, that they cannot withstand the heat, but dry up entirely. In this manner, great forests are sometimes entirely ruined. The Swedes who live here showed me, here and there great tracts in the woods, where young trees were now growing, instead of the old ones, which, some years ago, had been destroyed by the caterpillars. These caterpillars afterwards change into moths, or phalena.\(^5\)

If our western prairies were ever covered with wood it is most probably by this insect that they were first made naked, those trees only surviving the attack which grew upon the bottom lands along streams, where the drouth of mid-summer would be less felt than upon the uplands.

In the year 1791, the orchards and forests of New England were overrun by this worm, and the leaves of the apple, oak and other trees were devoured by it. It was at this time that it received the name “palmer worm” by which it has since been currently designated. This name was evidently derived from our English translation of the sacred scriptures. Another insect which a month or two before had devastated the fruit trees to an extent never previously known, appears simultaneously to have received the name which it still retains, the canker worm; for previous to this date we find this name given to what is now called the army worm. Many persons at that time, we doubt not, supposed them to be the very insects to which the inspired prophet alluded. Two years before, a clergyman who, from some remarkable phenomena which had just then occurred, had formed the opinion that the arm of the Lord was extended in wrath over our land, had written a discourse, in which it was predicted that great calamities were soon to happen. And the advent at that time of one of these strange insects immediately after the other, in such countless numbers all over the country, “the palmer worm
eating what the canker worm had left,' was an event well calculated to make a deep impression upon community, and to strike superstitious and weak-minded persons with awe and terror. The facts here stated we obtain chiefly from Webster on pestilential diseases, vol. i, pp. 286, 293.

Another remarkable visitation of these insects occurred in the year 1853, unparalleled by any event of this kind within the memory of the present generation. It at this time appeared suddenly in excessive numbers, over all the eastern part of the State of New-York, and all the New England States, the newspapers noticing it everywhere from Maine to Connecticut. Although we have no definite information respecting it beyond these limits, it was probably numerous in most parts of our country, several specimens of the moth having been sent me this year from the state of Mississippi, this being the only instance in which I have ever received this insect from any of my correspondents. It was on the sixteenth day of June that it first attracted notice in the section where I reside, but in the southern part of the State it began to be observed about a week earlier. When attention was once directed towards it, it was found to be common in all the orchards and forests around; and within a few days of the date mentioned, its depredations were so conspicuous that in every town and neighborhood throughout this district of country it was noticed and had become the leading subject of conversation, commonly before they were aware at each locality that every place around them was invaded in the same manner; and the worms were sent to me from different directions by persons who supposed it did not extend beyond the vicinity where they resided. It was currently regarded as a new and unknown insect; and in the prevalent ignorance upon matters of this kind, the most absurd and extravagant conjectures with regard to the origin and transformations of this worm were passed from mouth to mouth, even among educated men and persons of good general intelligence.

As it is probably atmospherical causes or some peculiarity of the seasons which favors the multiplication of this as of other insects, it merits to be observed that the weather had been remarkably dry and hot for some time previous to its advent. And
according to my own observations, those trees which stood in situations where they were openly exposed to the sun appeared to be most severely devastated, whilst in some instances at least, those standing in the shade of buildings remained green and unharmed; though I was informed of cases in which trees in shaded situations were stripped of their leaves.

The trees everywhere assumed a brown withered appearance, looking as though they had been scorched by fire. Apple trees and oaks seemed to suffer most, but all other trees and shrubs were more or less infested with these worms at this time. On jarring or shaking a tree, hundreds would instantly let themselves down from among the leaves, by fine threads like cobweb, some dropping to the ground, others remaining suspended in the air. Persons at work at this time upon potatoes or other field crops growing in orchards would have numbers of them crawling everywhere over their clothes, and, as an instance of the power of the imagination, the following may be related: A robust laboring man assured me that in three instances in which these worms happened to fall upon his naked arm he felt a stinging sensation like that from the puncture of a mosquito, this being occasioned, as he was firmly persuaded, by their bite. But other persons, with these worms crawling in numberless instances upon their naked skin, experienced nothing of this kind; and subsisting as they do exclusively upon leaves and other succulent vegetation, it is not probable that they employ their jaws upon any substance for which they can have no relish; their natural resort when irritated being not to bite but to wriggle violently and thus throw themselves away from the place where they are molested.

The worms continued in full force until the night of the twenty-third of June, when brisk showers occurred, accompanied with heavy thunder, terminating the drouth which had prevailed, and with this the worms suddenly disappeared. Upon the following day not one could be obtained by shaking trees which had been overrun with them the day before—the rain drops falling upon the leaves having doubtless dislodged them, in the course of the night, and perhaps drowning a considerable portion of them after reaching the ground. With a beating net,
however, a few specimens could be gathered from the leaves for several days afterwards.

The weather now becoming more moist, with copious showers repeatedly during the month of July, the trees in a measure recovered their leaves, although the crop of fruit for the year was everywhere destroyed. George Christie of East Greenwich informed me that the trees on his farm, in good bearing years produce probably a thousand bushels of apples, and the prospects for an abundant yield were never fairer than they were this year, until this worm made its appearance, blighting the trees and causing the orchard to look as though it had been frost bitten. And he gathered from it this year only two or three bushels of fruit, of a quality so inferior that it was scarcely worth picking. And similar to this was the experience of the owners of orchards generally—young thrifty trees yielding a scanty supply of inferior fruit which commonly sufficed for family use, nothing being gathered from full grown and old trees.

The following year, in June, it was universally expected that these worms would again appear, but the month passed away and no traces of them were anywhere to be seen. They could readily be found, however, on searching upon the leaves of the apple trees, but were no more common than several other kinds of worms in the same situation. Last year, 1855, they were quite rare, a very few specimens only having presented themselves to my notice. The present year they have been much more abundant, and in gardens in the city of Albany I observed a number of fruit trees the leaves of which had been badly eaten by them.

At the time of the appearance of this worm in such myriads in 1853, I was answering a letter from Hon. B. P. Johnson upon another apple tree insect, and inserted therein an account of this worm, with a description of it and the cocoon which it had then formed, stating that I would subsequently complete its history. I suggested that a small gay yellow moth which frequently occurred among apple leaves, a description of which under the name of Argyropleia pomariana I thereto appended, might probably be the parent of these worms. For the information of my immediate neighbors and friends upon a
topic which was of surpassing interest to them at that time, a copy of this communication was inserted in the Salem Press newspaper of July 12th, copies of which were distributed to all my correspondents. Upon the 8th of July I obtained the insect in its perfect state, and met with specimens in abundance, in orchards and forests upon the following day. A postscript to my previous communication was accordingly prepared, giving a description of the moth, when I was not a little surprised to receive from Dr. Harris a slip from the Cambridge Chronicle of July 19th, containing a short description of this same insect, under the name of *Rhinosia pometella*. Although this name, thus published in a local newspaper, had no scientific validity, I cheerfully adopted it. My communication of June 30th, and a postscript thereto dated July 23d, was published in the Journal of the New-York State Agricultural Society, September 1853, (vol. iv, p. 36), and was re-published with Dr. Harris's article from the Cambridge newspaper appended, in the Society's Transactions for that year, (vol. xiii, pp. 178—192). These are the principal papers upon this insect, so far as I am aware, which have hitherto appeared.

Although from its habit of drawing leaves together in a cluster, secreting itself between and feeding upon them, letting itself down by a thread, &c., the palmer worm corresponds with the Family *Tortricidae* of the Order *Lepidoptera*, there is a section of moths of Family *Tineidae* which possess these same habits, and it is to this latter family which this insect pertains. The genus to which it belongs is characterised principally by having the scales with which the feelers or palpi are clothed very long, jutting forward of the head horizontally like a camel's hair pencil, or a beak, with the last joint slender and projecting upwards from the middle of this beak like a little horn or spur, as represented in the profile view of the head, plate 4, fig. 4 a. The name *Chaeochilus* given to this genus by Mr. Stephens, is retained by Westwood and Humphrey in their recent work on British moths. The name *Rhinosia* bestowed almost simultaneously upon this genus by the German naturalist Treitschke and adopted by Dr. Harris, is too nearly identical with the name *Rhinotia*, given many years anteriorly by Mr. Kirby to a genus of weevils, to
allow its being retained, were it otherwise entitled to stand. *Chetochilus pometellus* thus becomes the scientific name of the palmer worm moth. Dr. Harris proposes "the little Snout moth" as the common name for this insect; but the designation Snout-moth is popularly applied to a very different group of insects; pertaining to the genus *Hyppena* in the Family *Pyralidae*; and the name palmer worm is so well established that no other designation for this species appears to be required or desirable.

When they are young these worms eat only the green pulpy tissues of the leaf, leaving its net work of veins entire. But as they become larger and more robust they consume the whole of the leaf except the coarse veins. It is the young and tender leaves, however, which grow at and near the tips of the limbs, which they prefer; the older and tougher leaves are commonly eaten only at their tip ends, and have irregular holes of various sizes gnawed in them, some of these holes being no larger than a puncture made with a pin. The green succulent ends of the twigs are also frequently ate off. And the young apples which were nearly as large as walnuts when these worms made their appearance, almost without exception had either round holes or larger irregular cavities gnawed in their surface. Thus wounded they wilt and fall from the tree, a few only having the wounds so slight that they recover and remain upon the tree till they ripen.

Both the larvae or worms, and the moths are much more variable in their colors and irregular in their marks when they are excessively numerous, than they appear to be at other times. The *larva* when small are somewhat tapering, as represented in the first figure of the cut, and pale yellow varied only with a darker stripe along the middle of the back and a darker head. They grow to nearly half an inch in length, and are then more nearly cylindrical, as represented in the second figure. They have sixteen feet, and bodies divided into thirteen segments by transverse constrictions. When approaching to maturity they are commonly of a pale green or yellowish green color, but when these worms are numerous, specimens of a sulphur yellow, watery whitish and flesh red colors will be met with. They are paler or whitish beneath. Along each side of the back a dusky or blackish stripe running the whole length of the body is the most conspicuous and constant mark which they possess. Above this a narrower whitish stripe is more or
less distinct, and along the middle of the back is a slender dusky stripe between the whitish ones. A transverse line of a clearer white color occupies the hind edge of each segment. Several small black dots symmetrically arranged and each one yielding a fine hair, may be perceived, whereof two above near the hind edge of each segment are the most conspicuous. The head is polished and of the yellow color of bees-wax. The neck or second segment is of the same color, and has above on each side of the middle a black stripe which curves inwards at its hind end, sometimes forming a hook, and outside of this are two black oblong dots, the lower one smaller.

It appears to be the ordinary habit of these worms to remain upon the trees and change to pupæ in the same tuft of leaves in which the larvæ have resided, the worm retiring into a plait or fold of a particular leaf and spinning a slight web of fine silken threads over itself, of so thin a texture that it may be seen through this web. But when they are numerous, multitudes of the worms live openly exposed upon the leaves, and the foliage is so totally destroyed on many trees that it can furnish no safe retreats in which they can conceal themselves when they are ready to change to pupæ. In such cases, as I infer from the habits of the worm when bred in cages, they secrete themselves under dry leaves on the surface of the ground, in crevices of the bark and similar situations, spinning a slight web over themselves. As they remain in the pupa state only a short time they require no regular cocoon or other substantial fabric for their protection.

The pupa is at first of a pale tawny yellow color with the head and sheaths of the wings and legs lighter yellow, and is about a quarter of an inch long. It gradually changes to a darker color, and in about ten or twelve days after the worm ceases feeding and shuts itself up within its web the perfect insect is disclosed. In different years the moths which I have bred have mostly come out of their pupæ state upon the eighth of July; and on one occasion, passing on this day under a large white oak tree which had been entirely stripped of its leaves by these insects, at every step among the weeds and grass a swarm of the moths would arise and flit a yard or two aside and alight again, this fact showing that they were mostly hatched at this date or earlier. The moths are of a gray color and three-eighths of an inch long, and rest with their long narrow wings folded together and laid flat upon their backs, the
fore part of the body being slightly raised from the surface on which they are standing and the antennæ turned backward and pressed down upon the wings.

The worm of the palmer worm (see plate 4, fig. 4) measures about 0.65 across its wings when they are expanded. It is of an ash-gray color. The fore wings are sprinkled more or less with black atoms, and have on the apical edge at the base of the fringe six or seven equidistant black dots. On the disk are also four larger black or brown dots, two before and two behind the middle, the latter nearer together than the former. These dots are placed obliquely with regard to each other, the anterior pair having the outer dot more towards the base of the wing than the inner one, whilst the posterior pair has the inner dot nearer the base than the outer one. Frequently there is a tawny yellow streak or cloud between the anterior dots and the base, situated upon the slight plait or groove formed by the midvein. Sometimes also a dusky transverse band may be discovered on the posterior part of the wing, half way between the posterior dots and the tip. The fringe on the inner tips of these wings is dusky, with a pale tawny band occupying its basal half. The hind wings above and beneath are dusky with a glossy azure blue reflection, and blackish veins, their long fringes being dusky. The under side of the body and the legs are dull whitish with a silky lustre, the feet darker with a white ring at each joint. The antennæ are alternated with rings of black and white.

The varieties of this moth are numerous, particularly in those years when it is abundant. The more important of these are as follows:

a. Ground color of the fore wings dull white instead of ash-gray.
b. Ground color of the fore wings pale tawny yellow.
c. The fore wings with a strong purplish-red reflection.
d. Dots on the middle of the fore wings three only, the anterior one being effaced. Rare. It appears to have been a specimen of this variety from which Dr. Harris’s description of the species was taken.
e. The four dots on the middle of the fore wings all wanting.
f. The dots on the apex of the fore wings faint or wanting.

Numbers of these worms are every year destroyed by a small footless grub or maggot, which lives in the palmer worm until it has attained its growth, when it perforates a hole through the side of the worm, and crawling out, spins a small white oval cocoon for itself, commonly attaching this cocoon very slightly to the surface of the leaf. The worm from which this parasite has crawled remains upon the leaf beside it, its feet seemingly paralyzed, so that it is unable to move from the spot. It turns its head at times from one side to the other, but eats no more and soon perishes.

When these worms were present in 1853 some persons attempted to save favorite trees from their ravages by repeatedly jarring the trees and with a pole breaking off the threads by
which the worms, suspended themselves and carrying them to a distance, repeating the operation day after day. But little benefit, however, appeared to result from this measure. More good may undoubtedly be done by attaching a long stiff handle to an old tin pan, smearing the inside of the pan with tar, bird lime or some similar adhesive substance, and catching the worms in this by swinging it around under the tree, as they hang suspended— renewing the coating as often as it becomes so covered with the worms and their threads as no longer to adhere to them.

The fact of the sudden disappearance of these worms with showers of rain was noticed in several places in the year 1853, and suggests the showering of trees when infested with the palmer worm, with water, by means of a garden engine, as a measure whereby to dislodge and destroy this enemy. At the time of its disappearance in the manner stated, worms of all sizes old and young were upon the leaves, showing it was not in consequence of their having come to maturity and being ready to withdraw, that they left the trees thus abruptly. The fact is reported (Trans. N. Y. State Ag. Soc., vol. xiii, p. 187) that a gentleman having a farm near Albany, discovering that two of the trees in his orchard had their leaves destroyed by these worms, procured some whale oil soap and diluting it with water, drenched the remainder of his trees with it, with a garden engine, whereby they were entirely preserved from the ravages of these worms. The worms were no doubt numerous upon those as they were upon all other trees at that time. Whether the whale oil soap made the application more efficacious than it would have been without it can only be known by further experiments. But the suddenness with which a portion of these worms drop themselves from the leaves of a tree when it is shook or jarred, renders it probable that the greater agitation which showering the leaves, simply, will occasion, will entirely rid them of these vermin.
A slender pale yellowish worm with a tawny yellow stripe along each side of its back, this stripe having a whitish stripe upon its lower as well as its upper side, and a pale yellow head; residing in the fold of a worm-eaten leaf, the fore part of July.

The tawny-striped Palmer-worm, Charcotichus Malifoliellus, new species.

A similar worm, but having a shining black head and neck; residing in a similar situation, the latter part of June.

The comrade Palmer-worm (probably), C. contubernalellus, Fitch.

In addition to the common Palmer worm, described in the preceding pages, other worms very similar to it in their appearance, motions and habits, and pertaining to the same genus of moths with it, are occasionally met with upon the leaves of apple trees. One of these I have noticed in different years, the fore part of July, at which time the common Palmer worm has nearly or quite disappeared. It is rather more narrow and slender than that worm but is otherwise like it in form and size. The stripes along each side of its back, however, are of a tawny yellow color, instead of dusky or blackish, and it has a pale stripe along the lower as well as the upper side of this dark stripe. It appears to be even more agile than that species, when disturbed wriggling and throwing itself about with lightning-like velocity.

One of these worms which I met with in an apple leaf which it had folded and tied together with silken threads was placed in a large mouthed vial. Three days afterwards it had eaten the whole of the leaf except its mid-vein, under which and some fine threads which it had spun, it remained concealed. Two fresh leaves were now put into the vial, July 4th. Forsaking its former domicil the worm now took up its abode in one of these leaves, which it folded neatly together, with the edges exactly adjusted to each other and securely sewed in their places. Here entirely hid from view it ate but little more before entering its pupa state, from which the perfect insect was obtained on the twenty-fifth of the same month. The accompanying figure is designed to represent the manner in which these different species of Palmer worms draw the leaves around them, ticing them together with fine silken threads and gnawing them more or less. The pupa also lies within these tufts of worm-eaten leaves, and when ready to disclose
the winged moth it crowds itself partly out from between them, in which situation the empty shell remains after the moth has evacuated it. At the upper left-hand corner of the figure the relics of the pupa are represented, protruding in this manner from between the leaves.

The larva when full grown is half an inch long and about 0.06 in diameter, composed of thirteen segments, distinctly marked by strong wide contractions at each of the sutures. The last segment is divided into two parts by a suture across its middle. The body is slightly flattened and of a pale tawny yellow color above, with two stripes upon the back and one along each side of a white or yellowish white color. Below the lateral white stripe the body on the sides and beneath is pale watery yellowish. Upon the back the edges of the segments are yellowish white, and on the hind part of each, outside of the white dorsal stripes is a polished black dot, from which arises a fine hair. A few other hairs are scattered symmetrically over the surface, arising from small faint dots. The head is flattened, slightly shining and of a paler yellow color than the body, with the antennae and the tips of the feelers dusky. The neck has five or six dark brown dots each side, irregularly placed and some of them slightly confluent.

The worm is very similar to that of the common species, from which it may be distinguished, however, by its fore wings being destitute of any black or darker colored atoms. They are ash-gray and glossy, often with a purplish red reflection, with a row of equidistant black dots on the apical edge at the base of the fringe. Forward of the tips is a dull tawny yellow band margined on its anterior side with dull white. Two dots behind and two forward of the middle, placed as they are in the common species, are also of a dull tawny yellow color margined anteriorly with dull white, sometimes these dots are confluent, forming two short oblique stripes. The expanded wings measure 0.65.

The common Palmer worm is so variable both in the larva and the perfect stages of its life, that I am not without suspicions this may be merely a variety of that species. But as it is later in the season in making its appearance in each instance where I have met with it, and is differently marked in its larva as well as its perfect state, I am induced to regard it as a distinct species.

Associated with the Palmer worms on apple and also on forest trees are found worms which are in all respects like them, except that the head and the upper side of the neck or second segment is black and highly polished, the neck having a slender whitish line on the middle. Though I have not succeeded in breeding any of these it is quite probable they are the progeny of a moth which may occasionally be met with in company with that of the Palmer worm, and which I named C. contubernalis.
or the Comrade in the postscript to my communication on these insects (Trans. N. Y. S. Ag. Soc. vol. xiii, p. 187). This moth is of the same size with that of the Palmer worm and has the same black dots on the middle and apex of the fore wings, but the ground color of these wings is so very dissimilar as to separate it at once from that species.

The Comrade of the Palmer worm moth has the fore wings dark brown on their inner sides and their outer half white, often tinged with tawny yellowish, and sprinkled with minute black atoms. When the insect is at rest this white color forms a broad stripe along each side. The inner edge of this stripe is well defined, and the stripe occupies all that part of the wing which is outside of the two outer dots of the four black ones near the middle of the wing; these two dots forming indentations upon its inner edge. Posteriorly the white stripe is gradually narrowed and ends in the fringe slightly forward of the tip; the fringe being black at the tip and yellowish white inside of this, becoming pale dusky towards the inner angle of the wing. On their under sides the fore wings are smoky and the fringe is blackish at the tip and pale dull yellow on each side of this. In all other points this moth is quite similar to that of the palmer worm.

We have several other New-York species pertaining to the genus Chetochoilus. One of these is occasionally met with the latter part of June in the yards about our houses. It also is of an ash-gray color and has a white band near the tips of its fore wings and three small pale yellowish spots on their outer edge beyond the middle, from which circumstance I propose naming it

The triple spotted, (C. trimaculellus). It measures 0.65 across the wings when spread, is ash-gray and very glossy, the fore wings paler on the inner bal portion, black at their tips and on the outer margin towards their tips, and with a broad blackish streak through the middle, not reaching to the base. The surface of the fore wings is sparsely sprinkled with whitish scales, which forward of the tips become more numerous and condensed, forming an angulated white band, very obvious to the naked eye, shaped like the letter V with its angle towards the tip of the wing. This band ends on the outer margin in a somewhat triangular pale yellow spot, with a smaller spot of the same color beyond it, almost on the tip, and another forward of it, nearly on the middle of the outer edge. The fringe is black, with a row of small whitish spots on its base and larger ones opposite them on the outer edge. The hind wings are sooty, their outer margin broadly whitish except at the tip, and their fringe pale dusky with a band on its middle formed of black spots transversely confluent. The wings on their under sides are dark gray, the anterior pair slightly freckled with whitish and on their outer edge showing the three pale yellow spots which occur above. The body and legs are silvery white, the latter blackish on their outer sides with a white band at each of the joints of the feet. The feelers which project forward of the head are rather short and thick, of a
gray color marked on their outer side with a broad black stripe which continues backward to the neck and embraces the eye. The spur-like tips of the feelers are white with a black line on the fore side. The spiral tongue when uncoiled is nearly as long as the antennae, and these reach backward almost two-thirds the length of the wings, and are black alternated with white rings.

I notice this species as it is the only one belonging to the genus which I have captured when in the act of depositing its eggs. It passes these through a long tube or ovipositor which is half the length of the abdomen when extended, and is composed of three cylindrical joints of a pale color, which shut into each other like the joints of a telescope. Its eggs are quite small, oval and opaque white, and those of the other species are probably similar.

Another species larger than either of the preceding occurs in woods at the close of autumn, and is remarkable for having both pairs of wings relatively broader and the tips of the anterior ones much more obtuse and cut off obliquely so that the extreme apex forms an obtuse angle instead of an acute one as in the other species; and whilst the other species show no very distinct spots or marks upon their bodies we here upon the under side of the abdomen meet with a broad white stripe having a row of black spots along its middle. It may hence appropriately be named

The belly-spotted (*C. ventrellus*). Its expanded wings measure 0.80. It is of an ash gray color with a satin-like lustre, the fore wings varied with paler freckles and sprinkled with numerous black atoms which in places are partially arranged in irregular transverse wavy lines, and on the apical edge is a row of equidistant black dots or short streaks placed on the intervals between the ends of the veins. The fringes and hind wings are pale lead colored or smoky. The abdomen is obscure yellowish, its apex ash-gray, and along each side is a row of glossy whitish spots, one upon the hind edge of each segment. Its under side is smoky, with a very broad white or pale dull yellow stripe along the middle, in which is a row of conspicuous black dots, one upon the hind edge of each segment, and on each side of these dots the edges of the segments have a glossy white reflection forming bands of this color. The wings are paler on their under sides and very glossy, the anterior ones whitish towards their tips and along the hind edge and regularly alternated with dark spots, whereof one is situated on the extreme tip, four others forward of it along the outer or costal edge and four slightly smaller ones upon the apical edge.

Time only can show whether any of these near relatives of the palmer worm which we have now been considering are liable at times to become excessively numerous like that insect, and like an allied species, the cabbage moth, described in my First Report. Should artificial interference to check their depredations become
necessary, it is probable that the same remedial measures to which allusion has been made under the palmer worm, will be of equal efficacy here. But commonly the numbers of these insects are so limited that they are unable to do any amount of injury which requires attention.

Cylindrical dull yellow worms, with light yellow stripes and black heads, when large becoming black with light yellow stripes and a yellow neck; when alarmed holding both ends of their bodies stiffly upward; clustered closely together and wholly stripping the leaves from one particular limb, in August.

The *Yellow-necked apple-tree worm*, or the *Handmaid Moth*, *Eumelopona ministra*, Drury. (Plate 4, fig. 3.)

There is probably no other insect invading our apple trees which excites more notice and alarm than does this. As it lives together in families, and commencing at the end of a limb, strips it perfectly clean of its leaves, the proprietors of orchards are apprehensive when it makes its appearance that it will continue and multiply until it utterly devastates their trees; and persons have repeatedly brought this worm to me, sometimes coming several miles to enquire its name and whether it is usual for it to remain where it has once made a lodgement. The insect, however, is not very common. Some years a few clusters of these worms will be found scattered upon different trees and then several years will commonly elapse before it is again seen. As these pages are passing through the press it is far more common in the vicinity of my residence than I have ever seen it before. In 1853 it was also to be met with in almost every orchard. And except in these years I have very seldom seen it.

The nakedness of the limb on which these insects are located attracts attention to it, and on coming to look for the cause of this nakedness, a whole family of plump glossy dull yellow or large black worms is found upon one of the branches next below those which have been devastated. If engaged in feeding they are huddled together upon the under surfaces of the leaves, a row of shining black heads, like a string of large beads, appearing along the sides of the leaf, each mouth busily engaged in
gnawing the margin, which rapidly melts away as they progress in their operations. If at rest they are all crowded together as closely as they can stow themselves, upon the twig where they have last been feeding, clinging to it with their four middle pairs of feet and with the ends of their bodies raised upwards. If the limb be touched or any other alarm is given them they all suddenly throw their tails upward at right angles with the body and curve their heads backward over their backs, with their anterior pairs of feet projecting outwards and resembling little black prickles; and they remain rigidly fixed and motionless in this grotesque posture for several moments and until the apprehended danger has passed away.

The moths begin to make their appearance upon the wing each year as early as the middle of June and continue till the end of July. Each female deposits her whole stock of eggs in a single clustre upon the under side of one of the leaves at the end of a limb. The eggs are from seventy to a hundred in number, white, globular, about three-hundredths of an inch in diameter, placed side by side in nearly straight rows, and securely glued to each other and to the surface of the leaf. The young worm gnaws a large opening through the top of the shell to make its exit. Those eggs which are first laid are hatched about the twentieth of July; others are fully a month later in giving out their broods. Thus some colonies of worms that are almost full grown will be met with when others are small and but a few days old.

The young worms eat only the pulpy under surface of the leaf, leaving its upper surface and veins entire. But when the brood has thus fed upon two or three leaves they acquire sufficient strength to consume the whole substance of the leaf, so that only its stem and a part of the mid-vein is left. The tender succulent leaves growing at the end of the limb where the worms have been placed by their parent, are first devoured; and as the worms advance in size and become more robust, they gradually as they move along down the limb come to leaves which are older and more tough and leathery, such as they would not have been able to feed upon when they were young and small. When the last leaves upon one twig or branch have been consumed, they crawl away to another, to finish their meal. Two or three stragglers
may be left behind when this migration occurs, being so intently occupied in feeding as not to notice the departure of their comrades. But on becoming aware of their solitary situation they hasten after their associates; and it is curious to observe the unerring accuracy with which they track and find them. On coming to where a twig branches off, it is examined, the worm reaching up it a third of its own length it may be, when it ascertains that the brood is not upon that twig, and drawing back, it travels onward, until it reaches the identical twig up which its predecessors have gone, and up which it at once mounts. The worm would seem to have some instinct by which it is informed of the direction in which its fellows have located themselves, or to possess an acuteness of smell like that for which the dog is noted, to be thus able to scent their footsteps. But when we come to examine the road they have followed, with a magnifying glass, we discover the clue which has doubtless served to guide them in this journey. Stretched along upon the bark we find a multitude of threads resembling the finest cobweb, so fine that they are wholly invisible to the eye. These threads the worms spin from their mouths wherever they go. And though so exceedingly slender they possess a surprising degree of strength, it being sufficient to sustain the weight of the worm. Individual worms sometimes when they are disturbed suspend themselves in the air hereby. They are more apt, however, to drop themselves to the ground. Others, when annoyed, throw their heads spitefully from side to side; but their most common resort, as already stated, is to throw the extremities of their bodies upward, and some will even bend themselves so far as to touch their heads and tails together, their bodies thus resembling a hoop or a ring.

The Larvæ are plump cylindrical shining worms, thinly clothed with long soft white hairs. When young their ground color is tawny yellow or sometimes tawny red; when mature they are coal black. They have been described as gradually changing to a darker color with each change of their skin, but I think this is a mistake. They remain of nearly the same hue from infancy until the last time they change their skins, when they are about an inch and a quarter in length. It is commonly with this change of their skins that they lose their yellow color and become black. When quite young and less than a quarter of
an inch in length, two black points surrounded by a pale yellow ring are visible above upon each segment, and others upon the sides. From each of these a white hair arises. These dots disappear as the worm becomes larger.

The immature or tawny yellow larvae have black heads and feet, and a spot on each of the prolegs, another on the tip and the two conical processes on the apex are also black. They have four slender pale or sulphur yellow stripes along each side of the body, and between the two lower of these stripes the breathing pores form a row of black dots, one upon each segment.

The mature or black worm grows to two inches or more in length, and has the same pale yellow markings as the immature worm. The head is black and without any spots. The second segment or neck is of a wax yellow color, and the lower one of the four sulphur yellow stripes on each side of the body is prolonged forward across this segment, with a black stripe contiguous to it on its lower side, and on its upper side a wider black stripe reaches half way across this segment. Above this the next sulphur yellow stripe is prolonged upon the base of this segment and has a short black line upon its upper side. Beneath, this worm has a sulphur yellow stripe along the middle and another upon each side. These lateral stripes are interrupted by a wax yellow spot on the middle of each segment, which spots are larger upon each of the feet-bearing segments and are prolonged inwards, forming transverse bands across the middle of these segments. The six anterior legs are black, the eight prolegs are wax yellow with a black spot upon their outer sides. In place of the pair of prolegs usually occurring at the end of the body this worm has two conical processes, which are abruptly cut off at their tips, and project horizontally backwards. They do not aid the worm in walking, being always elevated from the surface over which it is moving.

These worms are from six to eight weeks or more in growing up to their full size. More than half of them are usually destroyed, mostly, no doubt, by birds, so that of a brood of eighty or a hundred worms which come from the eggs only from twenty to forty are commonly remaining when they approach maturity. It has been reported that the worms of each brood all reach maturity at the same time and evacuate the tree in a single night. But in many broods dwarfish individuals occur, which are scarcely half the size of their fellows, and I have noticed worms which were still engaged in feeding a week or longer after the first ones of their brood had buried themselves.

The pupa state of this insect, which lasts from September to the following June does not appear to have been fully observed, and I regret that I am not able at present to fully complete this important link in its history. If Dr. Harris's observations have been exact, there is some diversity in the habits of these moths at this time. He says they enter the ground to the depth of three or four inches and within twenty-four hours cast their caterpillar
skins and become chrysalids. But on examining several of these worms which buried themselves about ten days since, I find they are not yet changed to pupæ. They have not inclosed themselves in follicles or formed the slightest cavity in the earth surrounding them. They are lying with their backs upwards, and have become rigid and motionless, and are contracted to half their previous size, now measuring an inch in length and 0.38 in diameter. They are about two inches below the surface, and it is surprising that such thick-bodied, soft and flesh-like worms as these were, were able to penetrate earth which is so firmly compacted that it almost breaks the blade of a knife to open and pry it asunder in clods.

The moths (plate 4, fig. 3) commonly measure from two inches to 2.40 across the wings when spread. The fore wings vary from pale buff yellow to russet and auburn brown. They are crossed by four and sometimes five narrow bands of a rusty or auburn brown color or blackish when the ground color of the wings is dusky, and their surface is more or less sprinkled over with rusty or blackish atoms. The anterior band is transverse and regularly curved like a bent bow, with its concave side towards the base of the wing. The other three bands are parallel with the hind margin. The second, which is commonly slightly broader and more distinct than the others, begins on the middle of the inner margin and runs nearly straight three-fourths of the distance across the wing, when it curves strongly forward to the outer margin. The third band is the most faint and is sometimes wholly wanting. It is parallel with the second and is similarly curved at its outer end though in some individuals less strongly. The fourth band is half way between the third and the tip and is slightly bent like a bow through its whole length, its inner half being nearly parallel with the hind margin and its outer half gradually receding from this margin. A fifth band sometimes occurs, situated slightly forward of this last one and parallel with it. Between the posterior band and the hind margin, commencing on the outer edge of the wing is an oblique rusty brown line, running obliquely inward and forward. Between the first and second bands, outside of the middle of the wing is often a dusky dot and back of it a transverse streak. The fringe of these wings is short and of the same color with the bands, and is edged with whitish on the apex. The hind wings are pale or whitish tinged more or less with tawny yellow or dusky. The hind edge of both pairs is entire and not in the least scalloped or toothed. Beneath they are paler, sometimes dull silvery white, sometimes dusky, at least on the forward pair. The head and fore part of the thorax is bright orange or tawny yellow, this color being deeper or brownish towards its posterior edge. The remainder of the thorax and the abdomen and legs partake of the color of the wings. The tongue or maxillæ is almost the tenth of an inch in length, when extended upward reaching the base of the antennæ, and is spirally coiled. The feeders or palpi are quite small, being only 0.05 long, and are appressed to the under side of the head, occupying the space between
the oral orifice and the eye. They are clothed with short hair-like scales, their tips being very slightly exposed. The basal joint is obconic, compressed, and curved; the second or middle joint is scarcely as long as the basal and about twice as long as wide, cylindric and compressed; the apical joint is minute, egg-shaped, and but half the diameter of the preceding joints. The antennae in the males have two rows of short hairs along their inner sides, in the females they are entirely naked and scarcely a third the length of the wings.

The following varieties occur in this species.

a. The third band on the fore wings wanting.
b. A fifth band slightly forward of the hind one, and parallel with it. Common.
c. A brown dot and behind it an oval transverse spot or short line between the first and second bands. Common.
d. The second and third bands straight and not curved forward towards their outer ends.
e. The whole space between the first and second bands darker than the rest of the wing.
f. The fore wings dark auburn brown, sprinkled with black atoms and the bands black.

This insect was first described and figured in the year 1773, from specimens gathered in New-York by Mr. Drury. He named it Phalaena ministra, the Latin word ministra meaning a maid-servant or handmaid. This name was perhaps suggested from the plain, modest appearance of this moth, without any diversity of colors or gay ornamental marks such as deck the insects of this order generally. The Handmaid thus becomes the most appropriate common name for this moth, whilst its larva will most readily be distinguished by the name Yellow-necked apple-tree worm. It belongs to the Order Lepidoptera, and it can be referred to no Family of this order except that of Notodontidæ. The essential mark by which this and the closely allied Family Arctiidæ are distinguished, is, that they possess a minute rudimentary tongue (maxillæ)—the larvae of the latter family being generally thickly covered with hairs whilst those of the Notodontidæ are nearly or quite naked. The insects of these two groups are thus intermediate between the Bombycidæ in which the tongue is wholly wanting and the other families of this order which have it long and spirally coiled. In none of the genera of the Family Notodontidæ however is the tongue so long as to be coiled, as we find it in the handmaid moth, save one, the genus Lophopteryx. In this genus also, the larva when alarmed throws the ends of its body upwards, in the same manner that our insect does. And in many of its other characters it coincides
closely with this genus, far more closely than with the genus
Pygæra in which it is placed by Dr. Harris, who had probably
overlooked the remark made by Mr. Westwood (Drury's Exotic
Entomology, vol. ii, p. 28) that from the structure of the larva
this insect "is nearly allied to Pilophora and Petasia, and not to
Pygæra." Mr. Westwood accordingly places our insect, though
with a query, under the genus Petasia. His specimens of the
larva, however, in being wholly denuded of hairs, misled him in
one character of some importance, the larvæ of Petasia being
destitute of hairs. And not to mention other marks of more or
less moment, as from the full descriptions above given these
marks will be sufficiently obvious to professed entomologists,
who are the only persons that will be interested in this topic, I
may observe that in being destitute of any hump or protuber-
ance upon the back of the last segment of the larva, our insect
differs from both Petasia and Lophopteryx. Indeed it does not
appear to find an exact representative in its preparatory and
perfect states, in any European species, and its arrangement,
therefore, in any of the genera which have been instituted is pal-
pably incongruous. I am hence obliged to propose a new genus
for this insect, which, in allusion to the bright orange or tawny
yellow color of its head and the anterior part of the thorax, may
be named *Eumelopon* (sy beautiful, prostwfr front). In a system-
atic arrangement of this group this genus will stand next to Lo-
phopteryx.

As the works of this insect are 'evil only and that continu-
ally,' and as the worms are so easily destroyed by cutting off
the twig on which they are clustered and throwing it into the
fire, whenever a brood is met with it should be exterminated at
once. Hens do not appear to relish them.

Eating irregular notches in the margin and holes in the middle of the
leaves, in June and September; a rather thick cylindrical light green
worm an inch long with five white lines and numerous white dots.

The Apple shoulder-striped Tortrix, or the Many-dotted Apple-
leaf worm, *Brachytænia Malana*, new species, (plate 8, fig. 5.)

There are many other kinds of worms in addition to those
which we have already spoken of, which feed upon the leaves
[Assem. No. 215.] 16
of apple trees. But they are seldom noticed, as they are not numerous and do not cluster together in societies, but occur solitary and sparsely scattered among the leaves. One of the most common of these, every year, is a pale green worm of nearly the same hue as the under surface of the leaves, and having numerous pale or white dots and five whitish lines running lengthwise of its body. On beating the leaves of apple trees some of these worms almost always fall into the net. They begin to appear the last of May, and are then small and of a more bright lively green color than when they are full grown. They live openly exposed on the under sides of the leaves, without forming any web or fold in the leaf for their concealment and protection. Though they are more common upon the apple than elsewhere they are not limited to this tree, but occur also on the cherry, the peach, and upon elm, poplar and other forest trees. They reach maturity about the last of June, and then measure an inch and a quarter in length, and 0.20 in diameter. The worm then selects an entire, thrifty leaf and contrives to bend one half of it into a convex form by attaching a fine silken thread which it spins from its mouth, first to the outer edge of the leaf and then to or beyond the middle vein, drawing each successive thread tight, as it fastens its end. It thus gradually curves the leaf until it forms a hollow or cavity of sufficient depth to receive its body under the threads. It then crawls into this cavity and continues to spin its threads, crossing them in every direction, until it has wholly shut itself in beneath the paper-like tissue which it weaves. Thus whilst many insects are put to the labor of spinning a ball or a pod-like cocoon for their protection during their pupa state, this worm has the artifice of bending a leaf so that it forms nearly two thirds of its cocoon, thus greatly abridging the amount of work to be done at this period of its life. Within the cavity thus formed it changes to a chrysalis, from which the perfect insect, which is an ash-gray moth or miller with a few slender black lines marking its fore wings, is subsequently hatched. One of the worms which shut itself within its cocoon on the twenty-fifth of June gave out the moth on the twenty-fifth of July. But I have captured the moths as early as the beginning of July, and worms which have not enclosed themselves in
their cocoons will also be met with at this date. Hence it appears that some reach maturity and come out in their winged state a month earlier than others.

The moths probably attach their eggs to the leaves, and from them comes another generation of worms the same year. These feed upon the leaves in August and September, and having enclosed themselves in curved leaves in the same manner, are with the fall of the leaves in Autumn carried to the ground, where they lie in their pupa state through the winter and hatch winged moths when the warmth of spring returns. It is quite probable, however, that some moths come from their cocoons late in autumn, and crawling into crevices under the loose bark of trees and similar situations, pass the winter in a torpid state, and come forth again upon the wing early in the spring—for freezing does not kill them, as is shown by the following fact. A worm having inclosed itself in an apple leaf the last of September, the leaf was placed in a tumber of moist earth and was kept in a warm room, whereby the winged moth was disclosed one evening in the latter part of December. The tumbler was hereupon placed out of doors, the night being intensely cold. Next morning the moth within it was found frozen as hard as a stone; but on bringing it within doors, it thawed in a few minutes, and immediately revived, flying and skipping about in perfect health.

The larvæ of this insect will be recognised with ease from what has already been stated respecting them. Worms however which have a most close resemblance to them produce another species of moth. When ready to change to pupæ these bury themselves in the earth and are eventually changed to a larger ash gray moth pertaining to the Family Noctuidæ. The two species are so closely alike when in their larva state that I have supposed they were but one. And I refrain from presenting a description of this larger moth and a full description of the larvæ until more exact observations will enable me to state the marks by which the worms of the one species may be distinguished from those of the other.

The insect whose transformations have been narrated belongs to the Family Tortricidæ and the Order Lepidoptera. It is most intimately related to a European species named semifusciana,
which was formerly placed by Mr. Stephens in the genus Ditula,
but in his last work (Catalogue of British Micro-Lepidoptera, p.
25) he makes it the type of a new genus, named Brachytænia, a
name meaning short marked or short barred, in allusion to the
stripes upon its fore wings. And I propose to designate our in-
sect Brachytænia Malana, or the short-barred apple Tortrix,
whilst its larva will be most readily distinguished as the Many-
dotted apple-tree worm.

This moth (see plate 3, fig. 5) measures from 0.80 to 1.15 across its wings
when spread. Its fore wings are ash-gray of a rather dark shade, but towards
their outer margins ashy-white and sprinkled with a few black atoms. A ser-
pentine black line towards their base extends from their outer nearly or quite
to their inner edge, this line being broader and less flexuous near its outer end,
and from this end a black streak on the outer edge of the wing reaches to the
base, where it meets a black band which runs across the anterior part of the
thorax. Parallel with this streak is another interrupted one, placed upon the
base of the cubital vein. From the middle of the outer margin a straight black
stripe extends obliquely towards the inner angle and ends abruptly near the
middle of the wing. Slightly back of this a small triangular black spot is
placed on the outer margin; and nearly half way to the tip is a second oblique
black stripe, parallel with the first and nearly as long, and from its inner end
a very zigzag and serpentine black line runs across to the inner margin. On
the hind part of the wing the middle veins are black, commencing at their
forks, forming about four slender longitudinal lines. Near the centre of the
wing is often a round whitish spot having a black dot in its middle. The hind
wings are dull whitish, slightly dusky towards their tips. Both pairs beneath
are silvery whitish thickly sprinkled with blackish points towards their outer
sides, and on their hind edge is a black line which is slightly interrupted by
the tips of each of the veins. The head and thorax are of the same ashy-white
color as the outer part of the fore wings. The head has an elevated transverse
ridge or crest between the bases of the antennæ and another below this upon
the middle of the face, the space between these crests being occupied by a black
band. On the hind part of the thorax the scales are also elevated, forming a
semicircular crest. The antennæ in the males are pectinated with two rows
of short robust branches. Those of the female (fig. 5 a) have rows of ex-
ceedingly fine short hairs along their insides.

A species which is closely related to the one now described
may be found in the forests early in the spring, before the leaves
have put forth. It is of an ashy white color with a large three-
sided black spot on the middle of the outer margin of the fore
wings, from which it may be named

* The triangular-spotted tortrix, Brachytænia triquetrana. Its ex-
panded wings measure 0.80. The shoulders or outer bases of the fore wings
are occupied by a short broad black stripe, and immediately back of this is a
black transverse angular mark, shaped like the letter V, with its inner part
more or less interrupted into two or three small spots. The triangular black
The Rose-bug, Macrodactylus subspinulosus, Fabricius. (Plate 2, fig. 3.)

An insect was recently (June, 1856) received from Dr. John Doy, of Lawrence, Kansas, with a statement that it was greatly infesting the young oak trees, and also the grape vines in that vicinity. He also said it appeared to be virulently poisonous. One of his hens with her nine chickens were found dead one morning, and on opening them a quantity of these insects were found in the crops of each. But the surmise that these insects are poisonous is certainly erroneous, though it may be that the poultry in this instance died in consequence of eating them.

Dr. Harris in his prize essay upon the insects of this family (Mass. Agric. Repository, vol. x, pp. 1-12), informs us that fowls eat these insects greedily, and that young chickens sometimes suffer severely from swallowing them alive. He adds that a simple remedy in such cases is pouring sweet oil down their throats. It is not improbable, therefore, that full grown hens when rapidly picking up these insects, may sometimes swallow them whole, and that the irritation and wounds which their prickly feet and sharp claws will occasion may prove fatal.

In his report to the Massachusetts legislature in 1838 (House document No. 72, p. 72), Dr. Harris again states that these insects are eaten greedily by domesticated fowls, and the same
remark is repeated in both the editions of his treatise on injurious insects. This testimony in connection with the known fondness of poultry for other species of insects most closely related to these, led me to speak of fowls as one of the most efficient means for restraining this insect from increasing, in a communication to the Country Gentleman (vol. viii, p. 75). But according to the observations of C. B. Meek, Esq. (Country Gent. vol. viii, p. 106), fowls and birds will not touch these insects. The fact related by Dr. Doy, however, fully confirms the statements of Dr. Harris. The discordant testimony upon this subject may be reconciled by supposing, what is probably the fact, that fowls after having suffered a few times from feeding upon these insects, will afterwards avoid them.

This insect is a beetle which is known by the name of the Rose-bug in different parts of our country. It has doubtless received this name from the fact that it makes its appearance towards the middle of June, about the time that the roses commence flowering, and from the injury which it does them. When these beetles are not excessively numerous it is chiefly upon rose bushes that they are noticed, and they would appear to be most fond of this and other vegetation pertaining to the same natural order, including the apple, the plum and cherry. But when we see the avidity with which they consume the foliage of forest trees also, as well as garden vegetables, grain and grass, we are left in doubt whether they really have any discrimination in their taste. Elder, which from the earliest times has been popularly esteemed as peculiarly repulsive to insects, and sumach, they eat freely. Grape vines suffer severely whenever these insects are numerous. They may frequently be met with upon Indian corn. And they seem to be much attached to a worthless weed which in many of our pastures usurps the place of more valuable herbage, the ox-eye daisy (Chrysanthemum leucanthemum). Fond as they are of the wild and the garden rose, still there are some species of this shrub which it is reported that they never molest—the cinnamon rose (R. cinnamomea) for instance. And they devour with avidity the fruit as well as the leaves and flowers of the plants which they visit.

It is somewhat remarkable that whilst in many places all over our country this beetle is excessively numerous, in other districts
it is quite rare or wholly unknown. It is only occasionally that I have found a specimen of it in the vicinity of my own residence, during the past twenty-five years. Some insects brought me from Bethlehem, Pa., while writing these lines, have this species among them, but the collector informs me it is not so common there as to have been noticed as a depredator. Dr. Harris states that it was wholly unknown in Maine and New Hampshire, and in the northern and western parts of Massachusetts, although in and around Boston it was excessively numerous. My correspondents in some parts of Ohio mention it as one of the greatest pests in their neighborhoods. And in Mercer county, Illinois, two years ago, I received surprising statements respecting it. It was the chief and almost the only pernicious insect which had ever been known upon the fruit trees there. The clerk of the county, T. C. Cabeen, Esq., of Keithsburgh, stated to me that in many orchards its numbers could scarcely be credited by persons who had not seen them. It invades the trees when the young apples are about the size of hazelnuts; and so eager is it for this fruit that it gathers upon the apples like bees when swarming, crowding together and clinging one on top of another, forming bunches as large as a tea-cup around a single apple, or the two or three apples which commonly grow from one bud. The fruit is wholly consumed by them, not an apple remaining in the orchard; and when there are not apples enough to satisfy them they eat the leaves of the trees also, more or less. He said he was particularly acquainted with one orchard, which had then for seven years in succession been wholly stripped of fruit by these insects, except two of these years, when the insect from some cause being not quite so numerous, here and there a straggling apple could be discovered upon some of the trees. Mr. James Burnet, residing in the same vicinity, informed me, that whilst these insects are out, a person cannot go into an orchard without their alighting upon his clothes, frequently in such numbers as almost to cover him. Though they do not continue long, their numbers and voracity make ample amends for what they lack in consequence of the shortness of their lives. They devour the young peaches also, though they are less eager for them than for young apples.
From other sources I was told that when they first show themselves each year, it is chiefly in the fields of spring wheat. They entirely consume the young wheat plants, and then invade the orchards. In consequence of this, many persons are firmly persuaded it is the spring wheat that breeds these beetles; and some have made it a point not to have any spring wheat sowed upon their farms, so long as these insects continue in their neighborhood. But this idea is evidently erroneous. We have a sufficient proof of this, in the fact, that this same insect has for many years been excessively numerous in Eastern Massachusetts, where no wheat, or but a very small quantity, is raised. The known habits of the larva, moreover, show that wheat is by no means essential to it.

This beetle belongs to the Family Melolonthidae and the Order Coleoptera, the same group which includes a common insect of kindred habits, the May beetle (Lachnosterna quercina), which some years is so numerous in particular localities, as to wholly destroy the fruit when in its' germ. One of the insects most common in Europe and most often mentioned in books, the cockchafer, also belongs to this group; and Dr. Harris states that it would be more correct to call the species under consideration the rose-chafer, instead of rose-bug. But this would lead to confusion, as another insect (Cetonia aurata), is commonly called the rose-chafer. Rose-beetle would be the most appropriate name by which to designate it, the term "bug" in strictness belonging only to insects of the Order Hemiptera, although in this country it is universally current for Coleopterous insects also; and the proper term for the latter insects, "beetle," is never heard among us, except occasionally from a person who has learned it from books. This insect, however, has become so widely known by the name rose-bug, that it is useless to attempt changing this name.

Its scientific name is Macrodactylus subspinosus. The generic name Macrodactylus, i. e. great claws or great feet, was bestowed upon it by the eminent French entomologist Latreille, in consequence of the remarkable length of its feet. Nearly a dozen other insects are now known which rank in this genus, all of them natives of Brazil or of Mexico. Its specific name subspin-
osus, meaning slightly or somewhat spined, has allusion to the sides of the thorax which jut out into an obtuse angle merely, many beetles closely related to this having sharp pointed spines or teeth where this angle occurs. In Dr. F. E. Melangeimer's Catalogue of Coleoptera, lately published, Linnaeus is cited as having originally given this name to this species, but on what authority it is credited to him does not appear. Dr. Harris says this insect was first named and described by Fabricius in 1781; but this author had previously described it (Syst. Entom. p. 39) in the year 1775; and this appears to be the first notice of it on record. Herbst subsequently described it under the name elongata and Beauvois under that of angustata, both these names having allusion to its long, narrow form.

The Rose-bug is 0.35 long or a little less. (The figure, plate 2, fig. 3 is intended to represent it its natural size.) It is covered with minute scales which give it a buff or ochre yellow color above, the head and thorax being of a lighter yellow tint, and the under side of the body is white. If these scales are rubbed off, the head, thorax and under side of the body is black and the wing covers yellowish brown. The antennæ are bright tawny yellow, their tips black. When extended backward they reach the middle of the thorax. They are composed of nine joints (as shown, magnified, plate 2, fig. 3 a), the three last being long, flattened and shutting together like the leaves of a book, and forming a large oval knob. The mouth and feelers are tawny yellowish-red often tinged more or less with black. The thorax is longer than wide, narrower than the wing covers, broadest across its middle, where on each side it bulges outwards forming almost an angular protuberance, from whence it is strongly narrowed both before and behind, making it nearly six-sided. The scutel between the base of the wing covers is rounded at its tip and almost semicircular, being rather longer than broad. The wing covers have slightly elevated ridges lengthwise. The whole of the last segment of the abdomen is exposed beyond their tips and is inclined obliquely downwards. The legs are bright tawny yellow, the four hind shanks are black at their tips and armed with a pair of thorn-like spines. The feet are alike in both sexes; each joint is narrower towards its base and of a tawny yellow color, black at its tip and furnished with a crown of black spines and bristles. The feet end in two strong claws or hooks of equal size, the tips of which are split.

This species presents several varieties, the scales being sometimes grayish-white above instead of yellow, the thorax beneath the scales brownish-red, &c.

The rose-bug first strongly excited public attention, in Massachusetts, in the year 1825, and the accounts of the extensive devastation which it was producing in various parts of the State induced the Massachusetts Agricultural Society to offer a premium for an essay upon its natural history, and some probable means for checking its progress. No such essay being presented
within the time specified, one of the active managers of the society, John Lowell Esq., the following year drew up an interesting statement of the facts in its history which had fallen under his observation, which was published in the Massachusetts Agric. Repository, vol. ix, p. 143. In the succeeding volume of the same publication appeared, in July 1827, Dr. Harris's essay already referred to, entitled "Minutes towards a history of some American species of Melolonthidae particularly injurious to vegetation," to which the prize which had previously been offered was awarded. And shortly afterwards a communication from Dr. Green appeared in the New England Farmer (vol. vi, p. 41 &c.) giving additional information respecting this insect. These are the principal articles upon the rose-bug which have hitherto been published; and from them we learn that its history and transformations are as follows.

The insects make their appearance suddenly, in incredible numbers. Esq. Lowell states that in 1826 not a rose-bug was visible on the last day of May. On the first of June at eight o'clock in the morning he gathered a mess of peas, and not a bug was then to be seen on the vines. At 10 o'clock happening to visit the vines again, they were literally overrun with rose-bugs of both sexes, generally paired or double. He proceeded to kill them by hand. Three hours afterwards they had appeared upon some rows of bush beans to the number of some thousands. These were all killed, and then on returning to the peas to see if any there had been overlooked, he found the vines as full as before. The next day he found them upon his corn, then only six inches high, twenty-five bugs being counted upon a single leaf, and one hundred and five on one of the hills. They also attacked his young cherry trees, and in twelve hours completely stripped them of their leaves. He says it would be but a moderate computation to allow that they killed a hundred thousand of these insects on a quarter of an acre. They followed them up regularly every morning, for a week, and thus nearly subdued them upon that piece of ground.

They continue about a month, and then all disappear. Towards the close of their lives the females crawl an inch or more
into the ground, where they deposit their eggs, which are about thirty in number, whitish, and almost globular. These hatch twenty days afterwards, and the little grubs which come from them, feed upon whatever tender, juicy roots they find. They grow to their full size before winter, and are then three-quarters of an inch long, and an eighth broad, of a yellowish white color, the head darker, tawny yellow and polished, and with six short legs inserted beneath upon the breast. The last segment of their bodies is much the largest, bluntly rounded at its end, and is turned under the body. To pass the winter these grubs descend in the ground below the reach of frost, and become torpid. When warm weather returns they revive and crawl back towards the surface, and each worm then forms for itself a pod-like cell of a regular oval form, and smooth on its inside. This is made by the worm turning round and round in one spot, whereby the dirt surrounding it becomes firmly compacted together. In this cell it changes to a pupa, which is soft and of the same color as the worm, but in shape resembles the beetle, the short wings and the horns and legs being traced out upon its surface, enveloped in a thin film, which, when the beetle becomes matured, is cast off. It then breaks open the earthy pod and digs through the ground till it reaches the surface. On its first coming out it is found upon the oak and elm before it invades either the wild or the garden rose.

These beetles have several natural enemies. The large dragonfly or darning needles, and several other predaceous insects, seize and devour numbers of them, whilst the insect-eating birds as well as dung-hill fowls have been said to feast and fatten upon them. But when they become so excessively multiplied as they do in particular districts, these natural enemies are unable to produce any material diminution in the myriads which are abroad, and it becomes necessary to resort to artificial means for destroying them. The only reliable measure for this purpose, yet known, is to gather them day after day by hand, or by brushing them into tin vessels of water, and by shaking and beating them from trees into sheets spread underneath, and then crushing, burning, or scalding them. This beetle is easily captured, being sluggish and drone-like in its motions, and a
person who enters resolutely upon this work will destroy countless numbers every hour. But it requires the combined efforts of a multitude of persons, when a district is overrun, to rid it of this pest; and bounties from the public treasury to encourage the destruction of such vermin, might as appropriately be paid, as for the destruction of wolves and other animals which are a public nuisance.

I have only further to remark that where these insects have abounded, grapes and other choice fruits, which it was earnestly desired to save from destruction, have been effectually protected, by covering the vines and shrubs with millinet or some other similar netting.

In the interior of ripened and stored apples accelerating their decay, whilst the outside remains fair; numerous slender tapering glassy-white worms.

The Apple midge, Molobrus Mali, new species.

The common apple worm or larva of the codling moth (Carpocapsa Pomonella,) a soft flesh-colored or white worm with a shining tawny yellow head, which feeds upon the seeds and adjacent fleshy parts of the apple and perforates a hole in its side through which to make its escape when ready to become a pupa, is the only insect which has been as yet noticed in our country as residing within this fruit. But from having observed apples the cores of which appeared to be depredated upon in a different manner from that of this worm, I have long entertained the opinion that we have other insects also which spoil this fruit from feeding internally upon it. And I have recently met with one insect of this kind, my investigations of which I here present.

Among the apples exhibited at the annual meeting of the State Agricultural Society, February 1856, I noticed one perforated with a hole from which a worm of the codling moth had made its exit. I took this apple at the close of the exhibition and examined it next day. It was a fine large specimen, fair externally and without any blemish except the perforation already mentioned. But on cutting it open almost the whole of its interior was found to be decayed. Its fleshy part was mostly
changed to a dull yellowish spongy substance resembling dried apple, with deep fissures or sinuses running through it. The seeds were blackened but entire and perfect, one only being worm eaten. In the centre was a large irregular cavity or vacant space, the sides of which were wet and slimy, and with numerous black grains, the castings of the worms which had occupied this cavity. And adhering to this slimy matter were found two pupæ of a small fly or midge, with numerous empty shells or skins of other pupæ from which the flies had hatched. And the remains of some of these flies were also present, having perished from their wings becoming entangled in this slimy matter. But they had mostly disappeared, the hole perforated by the codling worm giving them a passage way out to the external air. And it hence appears probable that it is those apples only, which are thus perforated, which are resorted to by these insects, as the passage which may be seen leading from the flower end into this cavity is scarcely of sufficient size to give them an exit after they have completed their transformations.

A fly was also discovered, which had that moment left its pupa shell, its wings being then undeveloped and only a third the length of its body. But in less than half a minute they had expanded to a length equalling that of the body, in which state they remained, the dry atmosphere let into the apple by cutting it asunder rendering them rigid and incapable of expanding to their full size. This fact beautifully illustrates how extremely delicate the wings of these flies are, requiring the damp atmosphere which they find in the interior of the apple to keep them soft and pliant until they become fully developed; and if a breath of dry air passes over them at this time, it dries them prematurely and they thenceforth remain deformed.

Whether the parent fly places her eggs upon the flower end of the apple and the young worms mine their way from thence into its center, or whether she attacks those apples only which the codling worm has left, crawling into the fruit through the perforation in the side which this worm has made, future researches must determine. The latter, however, appears to be the most probable. And this insect would hence appear to merely continue the mischief which the codling moth has commenced. The
lарvae of insects of this kind are long slender footless worms, tapering gradually to a point at the head, the opposite end being blunt. They are of a shining glassy white color, the viscera and alimentary matter contained therein showing more or less distinctly through their semi-transparent skins. They are more than double the length of the pupae.

The *Pupa* of this species is 0.12 long, though slightly variable in its dimensions. It is not enclosed in a cocoon, and its surface is somewhat glutinous, causing particles of dirt to adhere to it. It is of an elongated ovate form, pointed at one end and rounded at the other. Its head, thorax and wing and leg cases are black, the abdomen dull pale yellow, some specimens showing a short broad pale dusky band upon the back, on each segment, and some have a faint dusky stripe on the opposite side, from the leg cases to the tip. The thorax has the same color as the abdomen. The region of the throat is dull yellowish, more or less tinged with dusky.

The flies when at rest and with their wings folded and laid flat upon their backs have a close resemblance to the Hessian fly in every respect except that their legs are not so long and slender. And they pertain to the same group of insects with that, in the Family *Tipulidae* and Order *Diptera*. They belong, however, to a different genus, named *Molobrus* by Latreille, which may be recognized by its having five longitudinal veins in its wings, the middle one of which is forked. And the present species, which appears to be different from those which have hitherto been described, may be named

The *Apple Midge*, *Molobrus Mali*. It measures 0.15 in length to the tips of its wings. The head is black, spheroidal, transverse. The thorax is black and smooth, the scutellum separated from it by a deep wide fissure. The abdomen is dusky, almost black, with a bright yellow band at each of the sutures; beneath it is yellow with the middle of each segment occupied by a large square dusky spot; its tip is black, as is also the ovipositor, which is inclined downward and is composed of two pubescent linear valves. The legs are about as long as the body and are black as are the antennae also, though of a less deep tint than the head and thorax. The poisers are dusky. The wings are dull hyaline tinged with smoky, and are a fourth longer than the abdomen. In the female the antennae are half the length of the body and composed of fifteen short cylindric joints half as broad as long, clothed with short bristles which incline towards the tip, the joints very slightly diminishing in diameter outwards and but slightly separated from each other. The two basal joints are thicker and shorter than the following ones, as broad as long, and compacted together, the second and third joints being most widely separated from each other.

The flies belonging to this genus are all small, like the one we have described, and of black or blackish colors. Most of the larvæ which have been noticed have been found in the roots of
decaying trees, beneath the bark. The genus is somewhat extensive, nearly thirty species occurring in Great Britain alone, and they appear to be equally common upon this side of the Atlantic. Three of our species have been described by Mr. Say, and several others are in my own collection. Our most common species occurs from the last of June till the middle of August, in woods and in the yards about our buildings, and may frequently be met with upon the windows in our houses. It may be named

The Common midge, *Molobrus vulgaris*. It measures 0.10 to 0.12 in length, and is black, with blackish brown legs and pale thighs. Its poisers are whitish, and its wings hyaline. The sides of its thorax below the wings are tinged with pale, and the abdomen with brown, rarely pale.

Another common species found in the same situations and at the same dates with the preceding, and quite similar to it in its colors, may be distinguished from it by its much larger size and the smokiness of its wings.

The Smoky-winged midge, *Molobrus fuliginosus*, measures 0.18 in length, and is black with blackish brown shanks and pale thighs, their haunches being commonly white. Its wings are semi-transparent and smoky. The sixteen cylindrical joints of its antennae are more widely separated from each other by short intervening pedicles than in the preceding species. The gravid female, when pinned, extrudes her eggs, connected together in a continuous string.

A smaller species than either of the preceding, attracted my notice from the singular manner in which it ran about upon the paper on which I was writing, one night the latter part of December. As other individuals were found at the same period upon the windows, there is little doubt they had hatched from the earth in some flower pots which were in the room. This tiny insect would advance very rapidly two or three inches and then abruptly pause or move backwards a step or two and instantly run again in another direction about the same distance, and then back up again and start off in another course. It is quite similar to the *Molobrus (Sciara) femoratus* of Mr. Say, which like the foregoing, is a common species on windows in the month of July, but here the abdomen is of a uniform color, or pale only at its tip. It may be named in allusion to its mode of running,

The Pickle midge, *Molobrus inconstans*. It measures 0.08 in length, and is black with the thorax smooth and slightly shining, the thighs pale and whitish, and the wings pellucid and glassy with an iridescent violet and red reflection.
INFESTING FOREST TREES.

1. THE PINE.

AFFECTING THE LEAVES.

Fixed upon the sides of the leaves, exhausting them of their juices; small oblong flattish white scales, with a pale yellow spot upon their pointed end.

In those sections of our country where it is not common as a native of the forests there is scarcely any tree which is more esteemed for ornamenting the grounds around a dwelling than the white pine. Especially is it a favorite, and strenuous attempts are making to cultivate it about houses upon the prairies of the west; its tall growth and perennial foliage adapting it so well for a shelter from the winds of winter which sweep over those vast plains with such piercing severity; whilst by many of the residents there it is further prized as having been associated with the scenes of their early life, and thus reviving pleasant remembrances of their childhood's home.

But when it is transplanted the pine appears to be much more subject to the attacks of insects than when it is growing spontaneously. At least we meet with some kinds of these depredators upon cultivated pines, which we have never been able to discover upon these trees when growing wild in our forests. One of these, a species of coccus infesting the bark, and named the pine blight, was described in my First Report. We come now to treat of another insect of the same Family Coccoidea, which fixes itself upon the leaves, exhausting them of their juices and thus causing them to perish and fall, and the ends of the limbs to die when thus defoliated. Specimens of the leaves, thronged with these insects, were sent me by Robert W. Kennicott, of West North-
field, Cook county, Illinois, who gathered them the fore part of September, from pines in the yard of S. Francis, Esq., in the city of Springfield, in that State. These insects pertain to the genus *Aspidiotus*. No species of this genus has hitherto been discovered, infesting any tree of the pine or fir family. I infer this to be different, therefore, from anything which has been as yet described, and accordingly name it the Pine-leaf scale-insect, *Aspidiotus Pinifolius*. In size and shape these scales bear a marked resemblance to those of the Apple bark-louse (*A. conchiformis*) described in my last year's report, except that they are not curved as those are. Thus their form is like that of a muscle shell (*Mytilus*) rather than that of an oyster. Their color moreover, distinguishes them from any of the other kinds of scale-insects which are known to me, it being pure white, with a small pale yellow spot upon the pointed end, which spot is readily discerned by the naked eye.

The leaves of the pine are three-sided or shaped like a prism, and it is along one of the sides of these leaves that the scales are mostly placed, a few scattering ones, however, frequently being stationed on one of the othersides. In the specimens sent me they are crowded as closely as they can stow themselves, and frequently one scale overlaps the end of the next one. They are arranged lengthwise in a row, extending the whole length of the leaf, their width being just equal to that of the leaf. The small end in some is towards the base, in others towards the apex of the leaf.

When examined with a magnifier, those scales which are fully grown appear externally to be composed of three distinct scales, representing seemingly the head, thorax and abdomen of the living insect—each being of an oval form with rounded ends, and overlapping each other like the tiles of a roof. The largest of these three segments is of a pure white color, and of a somewhat waxy lustre, resembling in its appearance a small oblong drop of spermaceti tallow. Numerous parallel curved lines are sometimes perceptible across its surface. Overlapping the end of this is a pale dull yellow scale, a third or fourth of its size, and having a raised line along its middle. To this succeeds

[Assembly, 215.] 17
another, half the size of the preceding; this third segment being subhyaline, yellowish, and obtusely striated transversely. Beneath, this scale is white its whole length, without any indications of those divisions which appear upon its upper side. It is the tenth of an inch in length. Specimens but half grown are interspersed with the others, and all the scales on some of the leaves are of this small size. These show a raised line or slightly elevated keel along the middle of the white portion. Other specimens still, are merely minute oval dull yellow scales, without any whiteness at the end.

The scales which we have now described are the relics of the dead bodies of the female insects, forming a shield for covering and protecting their eggs. At the time the specimens before me were gathered the eggs had not become developed. Consequently on elevating one and another of these scales with the point of a needle, nothing is found beneath them except a small shapeless mass of dried black matter, the remains of the viscera of the insect. But at any time during the winter season, the little cavity under these scales will undoubtedly be found filled with minute round eggs. And the transformations of this species will be similar to those narrated of the Apple bark-louse.

It is evident that an insect of the pernicious character of the one under consideration, when so abundant as this appears to have been upon the pines from which the specimens before me were gathered, would soon cause the leaves to perish and the trees to die, if permitted to proceed unchecked in its career. But, fortunately, nature has in this as in most other analogous instances, provided means for restraining these creatures from becoming unduly numerous. A minute worm which feeds upon the eggs of the Apple bark-louse was noticed in our account of that species. Another insect, a species of Lady-bird, or Coccinella, common throughout the United States, devours both the Apple bark-lice and those of this species. I have repeatedly met with this Coccinella upon apple trees, but had not ascertained which particular kind of vermin it was in pursuit of upon those trees. For authentic information upon this interesting topic we are indebted to Mr. Kennicott, who has observed the larvæ this lady-bird preying with tiger-like ferocity upon the Apple
bark-lice, and who met with the same larvae and also the pupae and perfect insects upon the pines on which the scale-insects of which we are speaking occurred. Specimens of the insects and their pupae which he sent me, enable me to present an account of the preparatory states of this species. The habits of the group of insects to which this belongs, were narrated in my last report. The lice upon which this species feeds are so exceedingly minute that a large number of them will no more than suffice it for a single meal; and therefore, in the course of its life, each individual probably slaughters and devours such a multitude as can scarcely be computed. They thus render us a service of great value, and it is to be hoped that no one will fall into the enormous mistake of supposing that these lady-birds breed the lice among which they are found, and therefore undertake to exterminate them, as was once done where a similar species occurred upon currant bushes, as related in my last report.

In allusion to its habits this species may be named the Bark-louse lady-bird. It pertains to the genus _Chilocorus_ of the Family Coccinellidae and Order Coleoptera. It was noticed more than a century ago, by the Swedish naturalist, Kalm, when traveling through this country, who supposed it to be identical with the European _C. bipustulata_. It was afterwards for a long time confounded with the _C. Cacti_, Linn., a Mexican species closely related to it, which feeds upon the Cochineal insect (_Coccus Cacti._) We accordingly find it entered under this name in Dr. Harris's Catalogue of the Insects of Massachusetts. Mr. Say corrected this error in an article in the Boston Journal of Nat. Hist. (vol. i., p. 202) published in 1835, in which he thus speaks of this subject:—"_C. Cacti_ Fabr. This species occurs abundantly in Mexico; it certainly resembles very closely the _stigma_, Nobis, so common in this country, and the _renipustulata_, Mull. of Europe; but it is more than twice the size of either of those insects, and may also be distinguished from the former by the superior magnitude of the rufous spot of which the form is transversely oval, whilst that of the _stigma_ is orbiculor." Two years after this, this same species was named _bivulnerus_ in the third edition of Dejean's Catalogue, and in 1851 Mulsant (Coleopt. Trimer. Securip. p. 460) published a description of it under this latter name,
which is also the name under which it is entered in Dr. Melesheimer's Catalogue (p. 130) published by the Smithsonian Institution. Although the name *stigma* is but incidentally given by Mr. Say in the extract above quoted, it still is a published name, accompanied with such a description as makes it perfectly clear to what species this name is applied. This is all that is requisite, in my view, to establish Mr. Say's claim in the premises. In how many instances have authors bestowed names accompanied with no other description than a mere statement of one or two points in which the species designated differed from another known species. I consequently regard the correct scientific designation of this insect to be *Chilocorus stigma*.

The larvae are of a dull white color, with black shining heads, black legs and six rows of long black thorn-like spines running the whole length of the body, one spine of each of the rows arising from each segment. The spines are branched, sending off numerous small slender sharp points on every side. Covered thus formidably with prickles, it is probable that these little alligator-like animals are never devoured by birds, and are able to pursue their useful labors incessantly and without molestation from enemies.

At almost every step when studying this department of the works of nature, we are meeting with phenomena which excite our astonishment and admiration. These lady-birds are destined to remain dormant and motionless in their pupa state, for a period of about two weeks, in the middle of summer, when all nature around them is full of life and activity. We should expect they would at this time select some obscure retreat where they would not be apt to be noticed and devoured by birds or annoyed by any other creature. We have already observed that the leaves of the pine which are infested by the scale insect perish and fall, and that the twigs thus denuded become withered and dry. We should suppose that these dead leafless twigs, where it will be so conspicuously exposed, would be especially avoided by the lady-bird when seeking a place to repose during its pupa state. But, to our surprise, we find these insects at this time all crowding together upon the ends of these naked twigs. And they here fix themselves by their tails, and become motion-
less pupae, retaining around them the prickly skins of their lar-
va state. The appearance which they now present is truly re-
markable, the twig thus covered bearing the most perfect resem-
blance to a stem covered with burrs or thorny seeds, like the
ripened spikes of the hound’s tongue (Cynoglossum officinale) or
some more prickly plant. No bird will be disposed to approach
anything having such a noli-me-tangere aspect. And how curi-
ous it is that the scale insect by killing the leaves and making
the twigs bare should be adapting them for the abode of its mort-
tal foe. With such a discriminating eye has the Author of na-
ture planned the economy of these useful little creatures, making
it on the one hand their especial work to destroy a pernicious
family of insects, and on the other hand shielding them from
being destroyed in their turn. They would thus appear to be
under the special protection of Providence, and it is remarkable
that long ago, in a superstitious age, and when the habits of this
tribe of insects could have been but vaguely if at all known,
they were regarded in this same light, and in different countries,
and are supposed to have thus obtained in France the name of
“God’s cows” and “The Virgin’s cattle” and in England “Our
Lady’s birds,” and children were incited to regard them with
kindness and leave them at liberty, by chanting to them to “fly
away home, your house is on fire, your children will burn.”

In this family, as stated in my last Report, the pupae remain
partly enveloped in the prickly skin of the larva. In some spe-
cies, however, the larva skin is thrown entirely off, as I stated it
to be in the fifteen spotted or apple-tree lady-bird, and I observe
Mr. Westwood (Introduction, vol. i, p. 396) describes the C. bi-
pustulata as throwing off its skin in the same manner. In the
species now under consideration, the pupa appears from the
empty skins to be almost entirely enveloped in the skin of the
larva, with the rows of spines and their prickles protecting it in
every direction, and the head and legs of the larva retaining
their natural form, the latter being on the side towards the twig
from which the pupa is suspended. The empty pupa skin is
glassy and of a dull yellow color with blackish clouds. It re-
mains partly protruded from the lower or anterior part of the
cleft in the back of the larva skin.
In its perfect state the Bark-louse lady-bird is 0.17 or 0.20 long, very convex and almost hemispheric, highly polished and shining, covered with numerous very minute punctures. It is black with a round red or reddish yellow spot on the middle of each wing cover. Beneath it is black with the abdomen red or yellow, its basal segment black except upon each side.

It is probable that the scale insect of the pine can be destroyed by thoroughly showering the leaves with a solution of soap or with tobacco water immediately after the young larvae have hatched from the eggs. Could we be so fortunate as to devise some mode by which we could multiply the lady-bird at pleasure, it would undoubtedly be the most effectual mode of ridding the pine and also the apple tree of these minute vermin which are so pernicious to them.

2. THE LARCH OR TAMARACK.

AFFECTING THE LEAVES.

On the limbs in June and July, consuming the leaves; a large flattened ash-gray worm, resting appressed to and closely resembling the bark. The Larch cheater or lappet moth, Planosa Laricis, (plate 2, fig. 5, 6,) new species.

The modes by which nature has endowed many insects to enable them to elude the search of birds and other enemies are often truly wonderful. Among the insects thus endowed, the lappet moths and their caterpillars have often excited the admiration of the curious. The latter when in repose have the body flattened, somewhat like that of a leech, and on each side of each segment projects a little lappet or flat lobe. These lappets are pressed down upon the surface of the limb on which the worm is at rest. The sides of the body are also fringed with hairs which are similarly appressed to the limb. Thus all appearance of an abrupt elevation or an interstice to indicate the ends and sides of the worm is obliterated, and it resembles merely a slight swell of the natural bark, the deception being made complete by the color, which is commonly identical in its hue with that of the bark. And when there are spots or marks upon the caterpillar, they imitate the glandular dots, scars and

LARCH CHEATER—ITS DECEPTIVE APPEARANCE.
other discolorations which will be seen upon the bark around it. Even upon the closest scrutiny the eye fails to detect anything by which we can be assured this slight elevation is not a tumor which has grown in the bark. A lady to whom I once pointed out one of these caterpillars, I could perceive distrusted my statement and supposed I was imposing upon her credulity, the slight inequality at the point indicated being so exactly like a natural tumor upon the bark and so totally unlike a living worm. But a mite, wandering over the limb, on coming to this elevated spot sought to crawl under it, whereupon it gave a convulsive shrug to frighten the intruder away, by which the lady’s skepticism was dispelled. The cocoons which they construct upon the limbs are equally exact counterfeits of the bush. One of these upon a limb of the wild black cherry is now in the museum of the State Agricultural Society. It is placed longitudinally in the slight angle formed exteriorly where one limb branches from another; and a piece of putty could not be more perfectly moulded into this angle and smoothed off so as to leave no inequality. The bark of the cherry is blackish with transverse whitish streaks, and this cocoon presents the same colors and of tints almost the same, and what is most remarkable, it in one place shows a whitish streak continued from the bark upon the surface of the cocoon. And finally, in their perfect state, the moths imitate appearances which are common upon the particular trees on which they dwell; those upon deciduous trees, in the colors and scalloped margins of their wings resembling a tuft of withered leaves; those upon evergreens resembling a scar where the turpentine has exuded and concreted into a whitish mass.

Two American species of these curious insects are already known, both of them occurring in our State, upon the apple and other deciduous trees. To these we now add a third species, which resides upon the tamarack or American larch, *Abies (Larix) Americana*. It appears to be a rare insect. A specimen was presented to me by Dr. Emmons, in 1847, captured in the neighborhood of Albany that year by Mr. J. H. Salisbury, the chemist. The only other instance in which I have met with it, was upon a drooping larch in my front yard, in the year 1854. Upon
a dead, leafless limb of this tree two worms were detected upon
the twenty-second day of June, reposing near each other. They
crawled from this limb by night to feed upon the leaves of the
other limbs and returned to it to repose during the day, as though
conscious that such tumors or excrecescences as their bodies imi-
tated were natural to diseased and dead limbs rather than those
which were thrifty and in full foliage, and that they therefore
would be less liable to attract notice here than elsewhere. They
were observed daily upon this limb for a week, when one of them
having disappeared, the limb was cut off to secure the other,
although as I afterwards learned, the worm was now but half
grown.

The young larva is pale ash-gray, identical in its hue with that of the
limbs on which it resides. Its surface is varied with minute brown points, the
larger ones of which are impressed. Along the middle of the back is a narrow
black streak which is interrupted at each of the sutures. On each side of this
is a row of small elevated black dots or warts, one on each segment, these dots
giving out several black diverging bristles. On the outer side of each dot upon
the fifth and the following segments is a small yellow spot. The fourth seg-
ment or last one of the thorax is black above and on its sides and has a trans-
verse cream yellow spot on its hind margin; and the three segments before the
last are black above, between the black dots. The lappets or lobes along the
sides of the body are black at their tips and yield a few black bristles, and un-
der these and also along the sides of the lappets and of the body between their
bases arise numerous diverging white hairs, which are appressed to the surface
on which the worm is reposing. The head is ash-gray, with several blackish
spots, and is clothed with gray hairs.

The branch containing this worm was placed in a breeding
cage, and also a twig clothed with leaves, and to this the worm
immediately crawled, resting concealed among the leaves. But
it was very intolerant of confinement, eating but little if at all,
and in about a fortnight it perished. When in motion it has a
very different appearance from what it presents when at rest,
being much longer and of a nearly cylindrical form. It moves
in a hurried impatient manner, its gait resembling that of the
hairy Arctian caterpillars.

On carefully examining the tree on which these two worms
were observed, July 17th, I was so fortunate as to find a mature
worm and four cocoons. None could be discovered upon other
larch trees in the yard, and these insects were probably the pro-
geny of one single parent, which had strayed hither from a
distance, there being no self-planted trees of this kind within a circuit of several miles. The first moth came from these cocoons upon the twenty-fourth of July and the others hatched soon after.

The mature larva was 1.38 long and about 0.25 broad when in repose. It was of a very dull umber brown color, resembling that of the old rough bark upon the body of the tree; its extremities were of an ash-gray tinge and upon each side of the fifth segment was a cloud of the same color. Under a lens some short, wavy, black streaks were perceptible upon the surface. Along the back were little projecting points with rounded summits, one on each side of the middle of each segment, those upon the ninth segment larger and of a paler color, and with a small pale yellowish spot forward of their bases. The lappets and hairs upon the sides were the same as in the younger worm. Many of the white hairs were dilated at their ends into flat triangular heads, ciliated or fringed at their tips. The under side of the body was naked and pale bluish green.

The cocoon is of an ash-gray color, of the identical hue of the bark of the smaller limbs to which it is attached, lengthwise. It is an inch and a quarter in length, 0.30 broad, flattened and moulded to the limb and partly surrounding it, its middle rising 0.20 or less than a quarter of an inch in height, forming merely a slight bulge upon the limb, which is only observed upon a particular search. Some wrinkles lengthwise at its ends and sides may also be seen, similar to those of the adjacent bark; and on its surface here and there is a little blackish wart-like spot, placed transversely, closely counterfeiting the glands upon the bark, and also minute blackish points, resembling the pores in the bark. It is of a tough texture with a roughish surface, very similar in appearance to the pale gray wrapping paper which was formerly in common use among grocers and shop men. Woven into its surface is an occasional hair derived from the body of the caterpillar. Its inner surface is smooth and of a paler gray color than exteriorly. The naked bark of the limb forms the floor of the cavity within. And the moth makes its exit by crowding itself forward and thus separating one end of the cocoon from its slight attachment to the bark.

The pupa is 0.60 long and 0.25 wide, slightly depressed, rather broadest across the middle, and tapered to a point abruptly, with a very minute tooth standing outward upon each side of its apex. Its relics are of a chestnut brown color, the sheaths of the wings and legs paler and yellowish.
The moths are short, stout, thick-bodied, densely coated with long soft hairs, the males dark gray or almost black, the females white and a third larger. Both sexes have a singular crest upon the hind part of the thorax, formed of long curved scales which are glistening and resin-like, of an auburn brown color, arranged like the hairs of a moustache and jutting up from the surrounding prostrate hairs, forming a large tuft or protuberant oblong spot, broadest posteriorly and narrowing to its anterior end. The scales of this crest are of a peculiar form, being slender and hair-like with their ends dilated into an oval flattened knob, their shape thus resembling that of a spoon. When they are at rest these moths appear like excrescences upon the limb on which they repose, so exactly do they adjust themselves to it, their wings being held together in the shape of a roof, with their lower edges pressed firmly against the sides of the branch, and their white fore feet stretched forward resembling pitch which has exuded from a wound and running downward has dried in white streaks upon the bark.

The males (plate 2, fig. 5) measure 0.60 in length to the tip of the abdomen and of the wings, and one inch across the latter when they are spread. The head is densely clothed with white hairs in front and with blackish ones upon each side around the eyes. The feelers are minute and are wholly enveloped and concealed by long fine hairs, their ends forming a slight projection like the point of a camel’s hair pencil. These hairs are blackish on their outer sides and ash-gray within. The antennae are short, about a third of the length of the body, and are abruptly bent near their middle (as shown in the magnified fig. 5 a,) or with the ends straight in both directions from the crook near their middle, when they present the shape of an inverted V. They are furnished with two rows of coarse branches, which are long from the base to the crook, where they are abruptly shortened to half their previous length, and continue thence to gradually diminish in length to their tips. Each branch has a row of very fine hairs along one side, resembling eye lashes. The mouth has only the minute rudiments of a spiral tongue, and this not coiled as we see it in moths generally. The thorax is clothed with long hairs of a dark gray color, those at its anterior end white, and on its posterior part is the oblong crest of glossy spoon-shaped scales previously mentioned. The abdomen tapers slight-ly from its base to the tip and is clothed with blackish hairs above, whitish ones beneath, its apex having a dense tuft of long pure white ones. The wings are quite small for such a thick-bodied heavy moth. They are semi-transparent, being thinly covered with brown scales which are commonly denuded, the wings then appearing perfectly transparent like glass. Their veins are robust and white with darker irregular bands. The hind margins of both pairs of wings are entire and not in the least toothed or scalloped. When at rest they are pressed against the sides of the abdomen, in the form of a steep
roof, the outer edges of the hind wings protruding more or less from under the outer edge of the fore ones. The legs are heavily clothed exteriorly with tufts of long snowy white hairs, the forward shanks having a tuft of blackish ones on their insides at the base.

The female (plate 2, fig. 6) is quite unlike the male, being much larger and differently colored. It has a peculiarly delicate or mellow appearance, from the softness of its colors and the thinness and translucency of its wings. The latter when extended measure an inch and a half or slightly less. Their hind edge is occupied by a slender white band or line. Forward of this is a narrow pale dusky band which is abruptly widened near its middle to double its usual breadth, this widened part occupying two of the intestines between the veins. This band is margined on its anterior side by a white line, by which it is separated from a much broader and more dusky band, which is waved in its middle in conformity with the dilation in the narrow band behind it. Forward of this the wings are milk white, crossed by four very faint equidistant wavy bands of the same delicate pale dusky hue with those behind, these bands being often obsolete upon the middle of the wing and distinct at their ends only. The veins are prominent and white, forming slender lines of this color crossing all the bands. The hind wings are of the same soft dusky tint as the bands on the fore wings, but more pale, and on their hind margin is a white line or slender band. The hind edge of both pairs of wings is perfectly entire as in the male, and their fringe is pale dusky, on the fore wings crossed with white lines at the tips of the veins. The body is clothed with incumbent milk white hairs, the tip of the abdomen having a pale brown tuft, and the crest on the base of the thorax appears like a large elevated blackish spot. The antennæ in this sex (fig. 6 a) are very slightly crooked in their middles, and their branches though equally thick with those of the males, are much shorter, being but about four times as long as the diameter of their stalk. These branches are longest in the middle, and are gradually shorter from thence, both towards the base and the tips.

This insect belongs to the Order Lepidoptera and the Family Bombycidae. Those European caterpillars which have the sides of their bodies projecting in lappets such as the larva of this species presents form a genus to which the name Gastropacha has been given, and it is to this genus that Dr. Harris refers the two American species of lappet caterpillars which have already been alluded to. One of these, named Americana by Dr. Harris (the Illicifolia of Abbot and Smith, but not the species thus named by Linnaeus) in its colors and other characters is intimately related to the European species of Gastropacha. The other, originally named Bombyx Velleda by Stoll, closely coincides with the insect which we have now described, and differs like it from the other insects included in the genus Gastropacha in several important points. It has the same singular
crest upon the hind part of its thorax. In both these species the hind margin of the wings is entire and not scalloped as they are in the genus Gastropacha, and their wings are more thin, delicate and semi-transparent. In *G. Americana* the second vein which is given off from the outer side of the outer principal vein of the fore wings forks forward of its middle and both its branches terminate in the outer edge of the wing forward of its apex. In these two species the same vein forks much beyond its middle, the two branches diverge much more strongly, and both end in the hind margin of the wing, rather inside of the apex, the tip of the wing here being rounded and not forming an angle as it does in the former species. Such differences forbid our associating these insects together in the same genus. And as their deceptive appearance is one of their most prominent characteristics in each stage of their lives, the generic name *Planosa* (Greek πτέρος, a deceiver,) or in English, the cheaters, may appropriately be given to the *Velleda* and the species which we have here described. The best distinctive name for the latter will be that of the tree which it infests. We therefore propose calling it *Planosa Laricis*, or the Larch cheater.

From one of the four cocoons mentioned above, came five parasitic insects, which had destroyed the pupa. These gnawed their way out of the cocoon at short distances from each other, each making a round hole, the edges of which were rough and jagged. They were all females of a pretty species of Ichneumon fly (Family Ichneumonidae Order Hymenoptera) 0.30 long, of a black color with the abdomen and legs tawny red and the hind feet, scutel and a band on the middle of the antennae white. They pertain to the genus *Phygadeuon* of Gravenhorst, which genus is distinguished by having a depressed abdomen narrowed at its base into a slender stalk or petiole, a protruded ovipositor, the joints towards the base of the antennae somewhat long and the small cell in the middle of the fore wings with five sides. This genus embraces a number of described species, most of which have the abdomen red or red and black, with the scutel also black and not pale as we find it in the present instance. This insect may be named
The CHEATER'S PARASITE, Phygadeu n Planoscer. Its head is black with the feelers and orbits of the eyes broadly white. The antennæ are nearly as long as the body, black, with a broad white band beyond the middle, which includes four of the joints and is interrupted on its under side by a black line. The thorax is rough from numerous confluent punctures, which are more coarse and confused on its basal part, the angles on each side of the base above presenting a small tubercle or obtuse tooth. It is black above and tawny red beneath and on the sides, and shows several yellowish-white marks, as follows: a short line above on each side of the anterior middle; the wing sockets and a stripe from them to the head; an oblique stripe above the base of the anterior legs; a spot behind the wing sockets; a transverse square spot occupying the scutel, and an oblique spot upon each side of the base. The abdomen is as broad as the thorax, elliptic, flattened, convex above, concave beneath, the first segment narrowed into a petiole, the following segments abruptly bent downwards at a right angle with the first; surface with close fine distinct punctures; first segment smooth and polished, punctured each side at its apex, slightly margined by a slender elevated line along each side through its whole length; color tawny red, the five small segments which form the tip black with a slender white band on the apical edge of each. Ovipositor half as long as the abdomen, tawny red, its valves black. Legs tawny red, hind shanks black at their tips, hind feet white, their bases and tips black. Wings glassy-hyaline and iridescent, without spots, their veins and triangular stigma black.

The following varieties occurred among the five individuals alluded to, two of them being of the first and one of the other variety.

a. An additional white spot, upon each side of the thorax.
b. The two short white lines above on the anterior middle of the thorax wanting.

3. THE MAPLE.

AFFECTING THE LEAVES.

Round holes cut in the leaves, and their pulp consumed in rings and semicircular spots; round scales containing a small white worm between them, adhering to the surface of the leaves.

The MAPLE LEAF CUTTER, Omix Acerifoliella, new species (plate 4, fig. 5.)

In the summer of the year 1850 an affection of the maple trees causing their leaves to turn brown, appearing as though they had been nipped by the frost, was so common in the eastern section of New-York that it became a common subject of remark. This withered appearance of the leaves began to be noticed the fore part of August and it continued to increase for three or four weeks, and remained until the fall of the leaves in autumn. It was so conspicuous that it could be plainly perceived as far
as a grove of maples could be seen. And what appeared to be most singular, whilst the maples growing in forests were everywhere affected in this manner, those standing alone as shade trees in fields, and those planted around houses and along the streets of villages remained green and wholly exempt from the prevalent malady.

The cause of this fading of the leaves was readily discovered upon examination. They were found, when inspected, to present the appearances which are very well illustrated, plate 4, figure 6. The green parenchyma or pulpy substance of the leaf was destroyed in spots and irregular patches, leaving only the fine network of veins and the transparent cuticle. These spots were commonly in rings or in segments of a circle, with the centres green and unaffected. In addition to these, holes of a nearly circular form appeared in the leaves, about a quarter of an inch in diameter, with others of a smaller size. A dozen or more of these holes were at that time found in almost every leaf. And some of the pieces which had been cut out of the leaf, forming these holes, might be observed, adhering like round scales to the surface of the leaf, some on its upper others on its under side. On elevating this scale from the surface of the leaf, another smaller one was found beneath it, and between them was a small white worm, which was evidently the artizan by whom all this work had been done—cutting out these circular pieces from the leaf to form a cloak for himself, and when hungry feeding upon the pulpy substance of the leaf, thus forming the circular and irregular spots seen upon it. Occasionally one of these scales might be observed to move slightly along, the worm at such times protruding its head from under the edge of the scale and with its feet pulling its unwieldy domicil to another part of the leaf.

Generally the worm was found inclosed by three of these round pieces which it had cut from the leaf probably at successive periods of its life. First was a small one upon its back, about 0.18 long and two-thirds as broad, slightly concave on its under, convex on its upper side. Next was a larger piece, of similar form, placed on the under side of the worm, its edges overlapping those of the first piece, its concavity facing the con-
cavity of the first piece, thus forming a little hollow between, within which the worm lies like a clam within its shells. Finally, covering these two was a third piece still larger, 0.30 to 0.40 in length, placed on top of the first. The several pieces were connected and held together at their edges by fibres of fine silk. On the left hand of the leaf, plate 4, fig. 7, shows one of these cases its natural size; that on the right hand represents it magnified, whilst three cases of smaller sizes are represented adhering to the surface of the leaf. Frequently, as is shown in these illustrations the largest piece is cut from the leaf where it is crossed by one of the coarse veins, perhaps to render the structure more substantial.

The worm within these cases is nearly a quarter of an inch in length when mature. It is slender, and of a flattened cylindrical form, soft and contractile, composed of thirteen segments marked by slight intervening constrictions. It is dull white, the head, which is strongly depressed, and the three thoracic segments pale rusty brown. An interrupted broad blackish stripe along the middle of the back is more or less distinct. Only the three pairs of legs upon the thoracic segments are distinctly developed.

These worms, or many of them at least, are carried to the ground upon the leaves, when they fall from the trees in autumn. They remain in their cases and change to pupæ, among the fallen leaves beneath the trees, in which situation they may be found early in the following spring.

The pupæ are 0.18 long, pale yellow, and of an oval form, tapering abruptly to a point at their tips. The wings, legs and antennæ are enclosed in separate sheaths, not attached to each other or to the surface of the body. Upon the back each of the segments of the abdomen except the two last have a row of minute teeth along their anterior edges, inclined backwards, like the points of needles. By means of these teeth, the pupa when ready to disclose the perfect insect, crowds itself forwards out of its case, by bending itself alternately up and down, the sheaths of the feet upon the opposite side of the body serving as props to aid in effecting this movement. From it comes a small moth of a dark brilliant blue color with a bright orange yellow head,
which may frequently be seen during the month of May, flying by day or resting exposed upon the leaves, in forests and along their borders.

The moth (plate 4, fig. 5, the cross lines above the left wing indicating its natural dimensions) measures 0.35 across its wings when they are spread. The fore wings are brilliant steel blue or sometimes bluish green, with a purple reflection, and without any spots. The mid-vein forms a deep groove, lengthwise, from the base parallel with the inner margin almost to its tip, and on the middle of the wing towards the tip is another similar groove. The tips of these wings are commonly bent inwards, giving them when closed, the appearance of a little pod enveloping the abdomen. Their fringe is black interspersed with scales of brilliant blue. On their under sides they are dusky with a grayish silvery lustre and a pale purple reflection. The hind wings are pale smoky brown and translucent, with pale blue and purple reflections, and their fringe is pale brown. The head on the crown and between the antennæ has a dense tuft of erect bright orange yellow hairs. The feelers are straight, thread-like, shorter than the head, inclined obliquely downwards and forwards, of a gray color. The antennæ are black-brown, very thick and robust, thread-like, their tips curved and often spirally coiled. In the males they show a short spine-like tooth on each side of the apex of each joint, giving them a doubly serrated appearance. The thorax is brilliant steel blue. The abdomen is quite short and conical in the males, cylindrical and with a thin tuft of hairs at its tip in the female. In common with the under side and the legs, it is dark brown with a strong satin-like lustre, the feet being whitish.

This moth pertains to the Family Tineide of the Order Lepidoptera. Many of the members of this family reside in movable cases of various kinds, which they construct from the substances on which they feed. The clothes' moths, furrier moths, and others thus fabricate garments for their covering. Others roll pieces of leaves into cylindrical or conical tubes, within which they reside. And a few cut out circular pieces from leaves and stitch them together as it were, like the insect we have now described. The moths having this last habit pertain to the genus Ornix of Treitschke, one of the Greek terms for a bird, the wings of some of these moths resembling those of particular birds, which has led to their being named the goose-winged, turkey-winged, &c. The species under consideration, however, will be best distinguished by the name of the tree which it infests, and I accordingly call it Ornix Acerifoliellus, or the Maple leaf cutter. In the arrangement of the British entomologists it would probably be referred to Mr. Curtis's genus Erioccephala.
This moth was much more common five and ten years ago than it is at the present time. With the return of the month of May each year it was then met with in numbers in the forests. But for two years past not one has been seen, and last spring on searching among fallen leaves for its pupae where they were formerly found in plenty none could be discovered. Still, a few holes perforated in the leaves of maples continue to occur, showing that the insect is still present in the neighborhood, though in greatly reduced numbers. These holes are always nearly circular when they are first cut, but by the subsequent growth of the leaf they become oblong. A small Ichneumon fly of a pale yellowish color, the tenth of an inch in length, with black antennae longer than its body, has repeatedly hatched from the cases containing the pupae of this moth, and this has probably been one of the most efficient agents in reducing its numbers.

The fact has already been stated, that these insects do not invade trees standing alone in fields and in yards around houses. The reason of this is sufficiently evident, now when we know their history. The leaves when they fall from such trees are blown away by the winds, or are trampled into the earth by cattle traveling around and standing under them. If any of these worms, therefore, happen upon such trees, when the leaves fall and carry them to the ground, they become scattered and destroyed. And a knowledge of this fact at once suggests a remedy, whereby to save the trees from the depredations of this moth. Groves of maples more especially which are valued for the sugar they produce, will be materially injured, there is no doubt, by having their foliage destroyed as it was by these insects in 1850. But all mischief of this kind will probably be prevented by allowing sheep or cattle to range the grounds occupied by the sugar orchard; and if, notwithstanding this, the leaves of particular trees show that they are preyed upon by this moth, it will be well after the leaves have fallen in autumn, to feed salt to the animals under such trees, that any insects among the leaves may be trampled upon and destroyed.
4. THE POPLAR.

AFFECTING THE LEAVES.

In July, consuming all the leaf except its coarse veins, and reposing in a cavity formed of leaves drawn together like a ball; large black caterpillars with white and yellow dots and stripes, and a hump on their backs anteriorly and behind.

The White-S, *Clostera albosigma*, new species, (plate 2, fig. 4.)

Several different kinds of singular looking caterpillars, humped upon their backs and otherwise closely related to each other, occur upon the poplars and willows in Europe and this country. Although these insects upon the two continents very much resemble each other, the remark made by Dr. Harris appears to be correct, that they differ essentially in their caterpillar state, and their moths also present certain characters, which, on close comparison, will enable us to distinguish them. One of our species, named the American Clostera by Dr. Harris, corresponds in its marks with the *anastomosis*, and still more closely with the *reclusa* of Europe; and we come now to present another similarly analagous to the *curtula* and *anachoreta*.

The caterpillars attain their full size about the middle of July and are then an inch and a quarter in length, black, dotted with white above and with numerous wavy white lines on the sides, where are two rows of yellow spots, and on the back are four dull white stripes alternated with orange yellow on the middle of each segment. On the top of the fourth or last thoracic segment is a conspicuous black hump prolonged into a teat-like protuberance and a smaller hump upon the eleventh segment.

The caterpillar has a cylindrical form, and is clothed with fine white hairs. The white lines along each side form divers shaped rings and letter-like marks. The stripes upon the back are interrupted upon the two humped segments, and upon the middle of the two segments between the head and the anterior hump is a slightly elevated point in each stripe, of a brighter orange color. The anterior hump is inclined backward, and is furnished with two long and numerous short white hairs. The breathing pores form a row of broad oval black dots along each side, each dot surrounded by a white ring. Above these is a row of oblong yellow spots and below them another, each spot having a pimple in its centre from which arises a hair, and the posterior spots of the lower row having two of these pimples. On the third and fourth segments, the breathing pores being wanting, the two yellow spots are confluent, forming a single large spot with a pimple in its centre. The head is black and the Y-shaped
suture upon its front is tawny yellowish. The legs are black and the prolegs pale brown with a white ring on their middle.

Several of these caterpillars commonly live together upon a particular limb, which they strip of its leaves, eating all the leaf except its midvein and portions of the other coarse veins. They construct a kind of nest by drawing two or more leaves together, with the silken threads which they spin from their mouths, forming a hollow ball-like cavity within, in which they repose when not engaged in feeding. Three of these caterpillars which I transferred with their nest to a breeding cage on the 14th of July all spun their cocoons within the nest a day or two afterwards. The cocoons were formed of yellowish gray silk loosely woven and attached to the under side of a leaf. The moths all came out on the 25th of July, thus remaining in their pupa state but a little over a week. The moth crawls from its cocoon, and with its fore feet clinging to a twig, hangs perpendicularly downwards, swinging with the breeze, until its wings become dry and stiff. It then discharges one or more drops of an opake brick red fluid, and takes to flight. One of these moths dropped a number of eggs, which were of a hemispheric form and dark brown with a wide glaucous gray ring on the outer margin.

The moths (plate 2, fig. 4) measure an inch and a half across their wings when spread. They are greyish brown, of a pale umber hue, with a large oval velvet black spot, reaching from the front between the bases of the antennae to the middle of the thorax. The fore wings are slightly sprinkled with black atoms, and are crossed by four nearly equi-distant pale lines, forming slender bands, each of which is faintly margined on its hind side by a darker line. The two anterior bands are nearly straight and parallel, crossing the wing transversely. The third is less distinct than the others and can scarcely be discerned in some individuals. It begins on the inner margin in contact with the fourth band, and inclining towards the second, with a gentle curve becomes parallel with it through most of its length. It commonly ends before reaching the outer margin and is interrupted in its middle, and is sometimes dislocated at this interruption, as represented in the figure, its outer part being moved backwards from the line of its course. This band is margined posteriorly by a broad band which is but slightly darker than the ground color of the wing and of an olive green tint. It is broader on its inner end, where it is cut across by the fourth band. This last is nearly parallel with the hind margin, and is straight the first half of its length, when it curves slightly forward and then gradually turns directly backward, running parallel with the outer margin a short distance, and changing to a vivid snow-white color; with a curve it again turns outward and forward, and finally with an abrupt turn it runs straight and obliquely backward to the outer margin. Its white outer end thus nearly forms a letter S, which is the most conspicuous mark upon the wing. Immediately back of this on
the outer edge is a rust red spot, and the outer half of all that part of the wing which is back of this fourth band is of a darker brown color, becoming velvet black at its anterior side next to the band. Half way between the fourth band and the hind edge, on the middle of the wing, an irregular row of black spots or transverse streaks is more or less distinct. The hind wings are paler, and beneath are crossed by a slightly waved dark brown line.

This insect pertains to the same family with the handmaid moth, described in the preceding pages, and to the genus Clostera, which is characterised as having the scales upon the thorax elevated into a crest, the wings entire at their hind edges, and the antennæ (fig. 4 a) short, curved and with two rows of branches in both the sexes. The English species are popularly named chocolate-tips, the dark spot at the tips of their fore wings being of a chocolate brown hue. But in the species before us that tint is so slight as to be scarcely obvious, and it will be better distinguished by the name White-S, Clostera albosigma, this characteristic being in most individuals more conspicuous and vivid than it appears in our figure of the species.
INFESTING FIELD CROPS.

1. WHEAT.

AFFECTING THE STALK.

Externally on the stalks sucking their juices, turning the field white in spots where they are numerous; after harvest migrating to corn; a small narrow coal-black bug, with closed white wings, having a black dot on the middle of their outer edge.

The Chinch bug, *Micropus leucopterus*, Say. (Plate 4, fig. 2, and 2a, the same magnified.)

This is unquestionably one of the most pernicious insects which we have in the United States. The locusts of Utah and California are the only creatures of this class which exist within the bounds of our national domain, whose multiplication causes more sweeping destruction than does that of this diminutive and seemingly insignificant insect. Although it has never appeared as a depredator in this section of the Union, and was for a long time supposed not to occur to the north of the celebrated "Mason and Dixon's line," I have at different times met with three specimens of it in our own state, and Dr. Harris found it once in Massachusetts. As it exists in our midst, therefore, we have reason to fear that peculiar seasons or other favorable circumstances may at some future time arrive, which will cause it to multiply and become as destructive here as it now is in some of our sister states south and west. Hence its history is as deeply interesting to us as that of any other insect within our borders. And as enquiries respecting its correct name, its habits and depredations are so frequently appearing in our agricultural papers, I probably cannot render a better service than to present these topics as fully and definitely as I am enabled to do from the information which I have gathered.
The chinch bug is a small insect of a coal-black color, with snow white wing-covers, which are laid flat upon its back, and show a black dot upon the middle of their outer sides. The figure representing this insect its natural size (plate 1, fig. 2), will give the reader a very correct idea of its appearance. It belongs to the Order Hemiptera, the same order to which that disgusting object, the bed-bug belongs, and it exhales exactly the same loathsome smell which that insect does. It is by puncturing the plants with its sharp, slender, needle-like beak, and sucking out their juices, that this insect subsists. As it does not wound the plant by gnawing it, one would suppose that it could do no great injury. But their numbers are so immense that they bleed the plants on which they congregate, so copiously, as not only to arrest their growth, but cause them to wither and die. They prefer wheat to every other kind of herbage, and when that is not at hand they gather upon oats or Indian corn or grass; but they seem to be able to nourish themselves upon the juices of all kinds of vegetables. They remain upon the wheat until it is harvested. They then migrate to oats or corn growing adjacent to the wheat field, running nimbly over the ground, appearing at first glance like a swarm of black ants. Though they have wings they seldom use them, and only fly the length of one or two paces at a time.

It was just at the close of our revolutionary struggle, or about the year 1783, that this bug was first noticed as a depredator upon wheat, in the interior of North Carolina. It was at first supposed to be identical with the Hessian fly, which at this time was making such destruction in wheat crops on Long Island and in New Jersey. Two years before this, the British army accompanied by a detachment of its German auxiliaries had marched through North Carolina, and the battle of Guilford was fought. Mr. J. W. Jeffreys states (Albany Cultivator, first series, vol. vi, p. 201) that an aged and highly respectable citizen of Orange county, N. C., informed him that it was "immediately after this event that the Hessian fly or Hessian bug destroyed their crops of wheat; and they believed and do believe to this day (1839), that those soldiers left the flies or bugs as they passed through the country." The insects continued to increase and spread through
of the Carolinas and Virginia for several years. In 1785 the fields in North Carolina were so overrun with them as to threaten a total destruction of the grain (Webster on Pestilence, vol. i, p. 279). And at length the crops were so destroyed in some districts that they were obliged to wholly abandon the sowing of wheat. It was four or five years that they continued so numerous, at this time.

The only particular account which was published, of the insect and its habits at this period, of which we have any knowledge, appeared in London, in Young's Annals of Agriculture, vol. xi, p. 471. It is from this notice of it, Kirby and Spence state, that they derived the information given in their Introduction to Entomology (p. 127, American edition), which is as follows: "America suffers also in its wheat and maize from the attack of an insect, which, for what reason I know not, is called the chintz bug-fly. It appears to be apterous, and is said in scent and color to resemble the bed-bug. They travel in immense columns from field to field, like locusts, destroying everything as they proceed; but their injuries are confined to the states south of the 40th degree of north latitude. From this account the depredator here noticed should belong to the tribe of Geocorisae Latreille; but it seems very difficult to conceive how an insect that lives by suction, and has no mandibles, could destroy these plants so totally."

About the year 1809, we are informed by Mr. Jeffreys that the chinch bug again became so destructive in North Carolina, that in Orange county the farmers had to abandon the sowing of wheat for two years, and according to his statement the insects were subdued hereby. At various other times of which we have no record, it has undoubtedly been abundant in that and the adjacent states, that section of country appearing to be its head quarters.

In 1839 we have accounts of its having again become excessively numerous and destructive in Virginia and the Carolinas. W. S. Gibbes, writing from Chester district, S. C., June 27th, says, "Though we are not yet afflicted with the grain worm (wheat midge), nor much injured by the Hessian fly, a pest has appeared among us within the last two years, which from their
prodigious numbers threaten to be even a more serious evil. They are called chinch bugs in Virginia, though they have no resemblance to our domestic pests (the bed-bug, which is commonly named the "chinch" at the south), but their disgusting smell. They are nearly the shape and size of the small black flour weevil; can fly, but take to their wings reluctantly; have no mandibles, but a proboscis with which they penetrate the stalks of plants near the joints, and suck them to death. They have destroyed my oat crop totally; I shall not make the seed sown; my white May wheat, harvested the 28th of May, came to maturity too early for them, and was but slightly injured; but my white bearded wheat, harvested the 12th of June, was seriously injured by them—many ears not having a single grain filled in them. Bad as this is, it is nothing to what followed; for as soon as the small grain was cut, they took to our cornfields in such myriads as is inconceivable to any but those who have witnessed them. I have seen some of my corn so perfectly black with them for two feet up, no particle of grain was to be seen but five or six inches of the tips of the leaves; and they hung to the under parts of them in knots like little swarms of bees. It takes them only one or two days to destroy the corn. From such an attack I saw no remedy but burning them up, corn and all; and by prompt doing so in that part of the field into which they first migrated in such immense numbers, hope I have saved the rest of it from total ruin, though patches of corn in some of my other fields have been totally killed." (Cultivator, vol. vi, p. 103.) Although Mr. G. does not surmise that this excessive increase of the chinch bug was caused by any peculiarity of the season, yet we learn from another part of his communication that the weather at this time was remarkably dry and hot. He says, "We are suffering severely from drought. The whole spring has been dry. Our gardens are burnt up, without having yet given us anything. Our corn is in a most deplorable state—so wilted it must perish if we do not get rain in a few days. We have had but one rain to wet the earth below the furrow of a shovel plow since the 8th of May, and very little all April."
J. W. Jeffreys, writing from North Carolina the same year, gives the following history of their operations through the season. "They make their appearance in our wheat fields the last of May and the first of June, and continue therein and in oat fields until the grain is cut and secured, and they then march with all their forces and commence their attack on our cornfields, where they continue until the cold weather commences, and then take flight to the woods, though you may discover them in our cornfields sheltered in the boot of the stalk in the depth of winter, yet they rarely survive the winter. I have discovered them in July taking flight from our wheat and oat fields, and you may see thousands and millions flying to the woods, from which I am under the impression that they never return, but they leave a new generation behind, which are more destructive than their progenitors. No person can have the faintest idea or conception of the ratio of their increase, unless they study their history and movements. At this time there are myriads in our cornfields attached to the stalk, and they shelter under the boot or shuck of the stalk, and there multiply beyond conception, hundreds perhaps thousands attached to a single stalk." (Cultivator, vol. vi, p. 201.) It would appear from this statement, that in July the old insects, probably, which are about to perish, take wing and fly to the forest; and that on the approach of cold weather a large part of the new generation also makes the same migration. It may be that there is some truth in this statement, as the bugs would thus obtain a more secure shelter than they can find in the open fields; but I have seen no other testimony corroborating this.

The bug had now become so numerous in Carolina and Virginia, that with its continued increase in 1840, the total destruction of their crops appeared inevitable. The prospect was so alarming, that Sidney Weller, of Brinckleyville, Halifax co., N. C., and others in his neighborhood, united in the spring of 1840, in pledging a handsome sum as a prize for some feasible method to arrest the career of this depredator. But at this juncture, Providence interfered to accomplish what no human agency could have effected. Instead of being dry like the two or three preceding years, the summer of 1840 proved to be of an oppo-
site character, and the ravages of this insect were at once suppressed. Mr. Weller, writing in November, says, "Our fears were disappointed and our hopes exceeded as to this pest, by the hand of an overruling Providence. The season turned off wet and very propitious to crops of all kinds, and the ravages of this bug were arrested. Even fields of wheat that had been greatly injured, suddenly revived and produced tolerable crops; and the corn crop, which last season in places here, was ruined, escaped uninjured." (Cultivator, vol. viii, p. 21.)

It was about this period that the Chinch bug began to be noticed along the upper Mississippi, and through the northern parts of Illinois. It made its appearance there simultaneously with the establishment of the Mormons at Nauvoo (1840-1844) and many ignorant people firmly believed they were introduced there by these strange religionists, and "Mormon lice" became the name by which they were currently designated, through that district. When we have such instances of the credulity and ignorance of our own day and generation, let us not smile at our patriotic grandsires for deeming that the Hessian soldiers were breeding and shaking off pestilent vermin and scattering them over the country wherever they marched. It is quite probable that these insects were originally natives of Illinois, and now became multiplied in consequence of the settlement of the country and the extensive cultivation of wheat, giving them a copious supply of more congenial food than they previously had access to; or if it was newly introduced there at that period, as was universally believed, it probably arrived by gradually advancing from the south. In that excellent periodical, the Prairie Farmer, which has contributed so much to render the agriculturists of the west enlightened and intelligent in their vocation, several communications upon the chinch bug appeared in 1845 and the following years. An enlarged figure of the insect was given at this time (vol. v, p. 287) and in September 1850 vol. x, pp. 280, 281) a summary account of the insect with a description and a scientific name for it, appeared from the pen of Dr. Le Baron. As this is one of the most important original papers which has ever appeared, relating to this insect, and the volume containing it is now nowhere accessible, we reproduce it entire in the subsequent pages.
The chinch bug has now multiplied and extended itself over all parts of Illinois and the adjacent districts of Indiana and Wisconsin, and has become a most formidable scourge. The dry seasons which have recently occurred have increased it excessively. In passing over northern Illinois, in the autumn of 1854, I found it in myriads. In the middle of extensive prairies, on parting the grass in search of insects, the ground in some places was found covered and swarming with chinch bugs. The appearance reminded me of that presented on parting the hair on a calf that has been poorly wintered, where the skin is found literally alive with vermin. Our western neighbors have for many years been congratulating themselves upon the security of their wheat crops, exempt from the midge and other insect depredators which were causing us such losses here at the east. But they now find they have in the chinch bug a foe more formidable and destructive even than the wheat midge; since it not only cuts off their wheat but in many localities it takes the corn and other cultivated crops also. Although it is commonly only a strip upon the outer edge of the field which they devastate, yet in several instances the entire field is invaded and swarms with them, so that no grain is developed in the heads, and some have set fire to their wheat fields to consume the hosts of these vermin which were gathered therein, with the hope of hereby lessening the numbers upon their farms the following year. The disgusting smell, moreover, which these bugs emit, is most loathsome and sickening to the laborers engaged in harvesting the wheat fields. Cilley's reaping machine, made at Elgin, Illinois, has small deep boxes sunk in the platform, for the raker and three binders to stand in, that they may not have to stoop to their work as they would if standing upon the platform. As the machine is in operation, the feet of the men standing in these boxes become buried among the insects and fine chaff which fall into them. The men are so annoyed by these vermin, thus covering their feet and crawling up their legs, that they many times stamp to shake off and crush the tormenting things. And whether dead or alive, when thus heaped together in masses, such a stench arises from them, as, when wafted by the air it happens to come full in one's face, is the most loathsome and nauseating of anything that can be imagined.
This information is communicated to me by Mr. Albert Burnett, of Mercer county, Ill., who further states, that in that vicinity the chinch bug was the most numerous last year (1855) that it has ever been known. Having attended a reaping machine through the season of harvest, he says it was noticed in a number of instances, that these insects were most numerous upon the south and east sides of the fields. This is probably owing to these parts of the field being more warm and dry, from their greater exposure to the sun. And where a low damp spot occurs in a field, the grain or corn is there wholly exempt from injury, although all the rest of the field may be badly affected. He says he first saw the insect in 1850, at which time it was very abundant. The two following years it was but little noticed, but the three dry summers which have now occurred have increased it prodigiously.

William Patten, of Sandwich, De Kalb county, informs me that it was in 1850 that it was first noticed in his neighborhood, and that last summer it was more destructive than it had ever been before, the last sowed wheat being greatly injured by it in many fields. The early wheat in Illinois, as in Carolina, is ripened before the bugs become so numerous as to injure it.

Charles Hastings of La Salle, tells me the chinch bug had not been noticed in his vicinity until the year 1854, and it then did but little damage, but the following year many fields were much injured, and some were so much damaged that they were not harvested.

Edward McCollister of Juliet, tells me it has been less destructive the present year (1856) than it was last, though it has everywhere been quite a serious evil this season. Wheat from fields which have been infested by the chinch bug is readily distinguished by the grain dealers, the kernels not being plump and full, but more or less shrivelled and light of weight. These insects seldom if ever injure the first crop upon newly broken prairie. A strip of greater or less width upon one of the sides of a field is sometimes destroyed in autumn, when the plants are but a few inches high. Entering the field upon the side adjacent to an old wheat field, they advance with the regularity of an army, farther and farther, killing every leaf and spear as they
proceed, until a frosty night occurs, when their operations instantly cease.

Dr. Marshall of Keithsburg, informs me that in destroyed patches individual stalks sometimes occur, which have been missed by them. These remain green and thrifty, and their heads become well filled, when all around is bleached and withered. It is commonly a strip, two, three or even five or ten rods in width upon one of the sides of a field, which is whitened and destroyed by them; but in some instances they enter a field in a narrow strip, and then spread out into a large patch.

D. Williams of Geneva, Wisconsin, says the chinch bug made its advent there in 1854, coming apparently from the south, its nearest approach the year before being thirty miles south. In a letter written July 9th, 1855, he says it had that year caused considerable damage, especially in spring wheat, but a heavy rain two weeks before had checked its ravages.

The first appearance of the chinch bug at a particular locality and its progress from year to year, is related with more exactness than I have elsewhere seen, in a communication to the Country Gentleman (vol. v, p. 396) from E. C. Smith of Christy's Prairie, Ia., from which the following extracts, containing further information upon the economy and destructiveness of this insect are taken. It is dated May 20th, 1855, before the extent of the depredations of the bug that year could be fully known, and was accompanied with specimens and a request for information as to the correct name of the insect, it being termed the "corn fly" in that neighborhood. Mr. Smith says:

"The first time they were ever observed in this vicinity, so far as I have been able to ascertain, was nine years ago last summer. They were seen in a cornfield, about three miles from this place. They appeared to come from the stubble of a wheat field that bordered on the corn. They did but little damage. A few successive days of rainy weather put a stop to their progress; and nothing more was seen of them, that season. Two years later, they appeared on the farm of one of my neighbors, about half a mile distant. They came apparently, as before, from wheat stubble, though none had been observed in the wheat while growing; and they began on that part of the corn adjacent to it.
But few appeared at this time, and not much damage was done. In 1851, I observed them for the first time, on the farm where I now reside. The field in which they made their appearance had corn on one side and oats on the opposite side, with a strip of wheat between. They were seen immediately after the wheat was cut, on the rows of corn next to the stubble; and were so numerous, as to cover from one-fourth to one-half of the stalk, in many of the hills. The corn soon began to wither. They did not devour the solid parts of the plant, but pierced the outer part or skin, full of holes, or destroyed it in large patches, here and there, over the stalk, and appeared to feed on the juice. A few rows next to the wheat, were completely destroyed. The crop was more or less injured to the distance of about eight rods from the stubble. On the opposite side, the oats were killed to the distance of two or three rods from the wheat. The remainder ripened without injury."

"They appeared again the next year, and about the same time of the year; but did little damage. Strange to say, it had not yet entered my thoughts, that they had done, or could do, any damage to wheat. The next spring, (1853,) my wheat looked unusually promising. But when it had grown to the height of a foot or more, I observed that more than half of it had stopped growing. This portion was only six or eight inches in height, and it grew no more, but withered and died; from what cause I could not imagine. The same fly appeared again in the corn, after the wheat was cut. The rank growth of the corn, together with one or two heavy showers, prevented it from doing much injury.

"Last summer; there was the same appearance in the wheat, as the summer previous. A part of it dwindled away, after it had grown to the height of a few inches. At the time of cutting the wheat, these insects were observed, in motion towards the corn, which was close by. In a few days the corn nearest to the stubble was so covered with them, as to appear, at a little distance, as if covered with black paint. The corn was backward and dwarfish, and the season excessively dry, both of which circumstances favored their destructive effects. About fifteen acres of corn was destroyed by them. They swept over about
forty acres more, some parts of which were nearly destroyed, others only slightly injured. One of my neighbors, had twenty-six acres of corn completely destroyed by them last summer, and fifty acres more greatly damaged. There was not a corn-field on the prairie, in which the crop was not greatly damaged. I do not know that they have ever been seen in this region, anywhere else than on the prairies, till last summer. Then, they were seen on farms formerly covered with timber, many miles distant from any prairie.

"The attention of people here, was so thoroughly called to this insect, last summer, that when it appeared this spring, it was readily recognized. It was first observed on fences, or flying about, and alighting here and there, like other winged insects. Soon it was found about the roots of wheat,—then in oatfields, and in timothy grass. Wherever it has been seen among grain or grass, some of the blades were seen to turn yellow, and the growth to be checked, or stopped entirely; and in many cases, the whole plant completely killed. Probably, not less than one-third of the wheat crop, in this vicinity, has already been destroyed by them; and their destructive operations are still in progress."

In Virginia and Carolina during the past year or two there has also been great complaints of this insect, and the present year an editorial in the Richmond (Va.) Whig, the latter part of July, says "A general alarm, from the mountains to the seaboard is felt for the corn crop. The chinch bug is universal, and like the sand of the sea-shore for numbers. Many corn-fields are entirely destroyed by them already, and others can only be saved by timely and copious rains."

The chinch bug is probably a common insect through all the southern states. I have received specimens of it from Mississippi, and am informed it some years has done much injury to the crops of Indian corn there. I also have a specimen from western Pennsylvania. It therefore appears to occur in all parts of the United States between the Atlantic and the Mississippi, although in the Eastern and Middle states it is exceedingly rare.

The three specimens which I have met with in this state, occurred upon willows in the spring of 1847 and May 12th 1851.
It would thus appear to leave its winter quarters with nearly the first warm days of spring, and resort to the earliest foliage which puts forth, for nourishment after its long fast. It passes the winter under the loose bark of decaying trees, in the cracks and crevices of stumps and logs, and similar sheltered situations. Mr. Albert Burnet informs me that in turning over chips and pieces of boards lying upon the surface of the ground he has frequently met with it alive, in February, though in a torpid state upon cold days.

The history and description of these insects given in 1850 by Dr. Le Baron, of Geneva, Kane Co. Ill. in the Prairie Farmer, is as follows:—

These insects have prevailed the present season throughout this and the adjoining counties in ruinous profusion. The season has been excessively dry, which has probably been favorable to their multiplication. I find by reference to the back numbers of the Prairie Farmer that they have been equally destructive in other sections of the country in former years.

They make their appearance in the latter part of June, confining their depredations at this period chiefly to the spring wheat. So rapid is their multiplication, that in the course of a few days from the time of their first appearance, whole fields are overrun by them, every straw being more or less infested.

They belong to the suctorial division of insects, and do their damage by imbibing the juices of the plants which they infest. The sucking instrument, as in other insects of the kind, consists of a slender four jointed beak, which when not in use is bent back under the body, and rests upon the breast. Upon that side of the beak which is undermost when at rest, is a narrow groove, in which is contained an extremely fine bristle-like lancet, which is capable of being disengaged from its sheath and used as an instrument for puncturing the straw. When a flow of sap has been thus produced, the lancet is returned to its sheath, and the whole instrument is used for the purpose of suction. Collected in dense clusters, chiefly about the lower joints of the straw, with their suckers partially inserted into it, or applied to the punctures previously made, these little insects appear to repose in luxurious contentment. Meanwhile the grain being deprived of its necessary nourishment, becomes wholly blasted or much shrunken, whilst the straw turns white prematurely and at length crinkles down beneath the lancets of this infinity of phlebotomists.

When the wheat becomes too much dried up to afford them nourishment, they leave the wheat field, and may be seen at this time running on the ground in all directions in search of appropriate food. Next to wheat they usually attack oats, then corn, and lastly timothy or herds-grass; and if none of these are at hand, they will subsist upon some of the wild grasses. The Indian corn is so rapid and vigorous in its growth that it is not usually much injured; yet I have seen, this season, whole fields blackened with them, and large patches of corn blasted and prostrate, as if a fire had run over them.

They migrate from one field to another by running over the surface of the earth. Nevertheless when they are obliged to move to a distance, the perfect or winged individuals readily take to flight, and they have been seen flying in dense swarms.

They are seen in about equal numbers in their different stages of growth. The younger specimens are found especially abundant in the earth to the depth of an
inch or more, about the roots of the grain; from which it may be inferred that the eggs are deposited in this situation, though I have not as yet succeeded in discovering them.

These insects present, in the course of their development, the following characters. The youngest individuals are vermillion red, the thorax or anterior part of their bodies inclining to brown, and with a white band across the middle of the body, comprising the two basal segments of the abdomen. As they increase in size they become darker, changing first to brown, and then to a dull black, the white band still remaining. The antennae and legs are varied with reddish. In their final or perfect state they acquire white wings varied with a few black spots and lines.

These insects belong to the Hemipterous order, and to the genus Rhyparochromus in the family of Lygaeidae. The generic name is of Greek composition, and signifies sordid color; in reference to the dull colors of the majority of the species. I have not at hand the means of determining whether the present species has been scientifically described and named. It might be appropriately called the Rhyparochromus devastator. The following may serve for a more accurate description of the perfect insect than, so far as I am aware, has been heretofore published.

Length 1 2-3 lines, or three-twentieths of an inch. Body black, clothed with a very fine greyish down, not distinctly visible to the naked eye; basal joint of the antenna honey-yellow, second joint the same tipt with black, third and fourth joints black, beak brown; wings and wing-cases white; the latter are black at their insertion, and have near the middle two short irregular black lines, and a conspicuous black marginal spot; legs dark honey-yellow, terminal joint of the feet, and the claws black.

So sudden is the invasion and so rapid the progress of these insects, that it is scarcely probable that any preventive or remedy for their devastations will ever be discovered. Yet it is an admirable provision of nature, that those creatures which multiply at certain seasons in alarming profusion, do as suddenly and often as unaccountably disappear. The common method by which the excessive increase of such creatures is kept in check, is by the appropriation to each of them of some parasitic insect, which multiplies coextensively with them, and by preying upon them restrains their increase within moderate limits. The migratory locust, for example, and also the Hessian fly, and most kinds of caterpillars, are known to be infested by parasitic insects. It is devoutly to be wished that nature may have provided this, or some other remedy, against the indefinite extension of the ravages of the present species, whose origin and progress seem to be so wholly removed from the reach of human control.

Little requires to be added to this account. The eggs of these insects according to an editorial in the Southern Planter (vol. xv, p. 269) are deposited in the ground, in autumn, where they remain through the winter and until the warmth of the ground the following year causes them to hatch. This takes place in May at the South and probably not till June at the West.

This insect never appears in the form of a worm or maggot, like the larvae of moths, flies and beetles. Still, in its larva state it is quite unlike what it is after it acquires wings, being more flat and broad and having considerable resemblance to a bed-
bug, though of a brighter red color when it is small. One of these young chinch bugs which I met with in some diseased wheat straw sent from Virginia presented the following characters:

The young larva when 0.06 long is about 0.03 in width, with a very flattened body of an oval form and a bright blood red color, with a band across its middle above, of a yellowish white color, occupying the two first or basal segments of its abdomen, behind which, in the centre of the back are two black spots, one behind the other. Its six legs and its beak or sucker, are of a honey-yellow color. Its antennæ are analogous to what they are in the mature insect, having four joints, the last enlarged, forming an oval knob tapering to a point at its end, the two basal joints being light yellow, and the two last ones dark brown.

These larvae as they advance in size become darker colored and finally blackish, still showing the white band across the middle of their bodies. At length this band disappears, and the insect becomes a pupa. It is now much like the perfect insect in its form and colors, except that it is destitute of the white wings upon its back, having in place of them an oval black scale upon each side of the base of the abdomen. The edges of the abdomen in the pupa are also of a dull pale yellow color. So late as the fore part of October I met with several of these insects still in their pupa state, and some of these I do not doubt, would pass the winter in that state, and therefore would not deposit their eggs until the following spring.

The females of this species are tenfold more numerous than the males. The magnified illustration, plate 4, fig. 2 a, shows all parts of the insect so distinctly and exact that no description of it is necessary, beyond what is given in Dr. Le Baron's account. It may be observed that the hind edge of the thorax is of the same deep honey-yellow color with the legs, the beak, and the base of the antennæ, all the rest of the body and the antennæ being coal-black and clothed with fine erect hairs, except the wing-covers which are snow white. The anterior end of the thorax is not so full and broad as represented in the figure, and extending across the thorax rather back of its middle is a transverse depression, much more deep and distinct in some individuals than in others.

This species presents several varieties. On a comparison of numerous specimens the following will be readily distinguished:

a, immarginatus. Basal margin of the thorax not edged with yellowish. Common.
CHINCH BUG—ITS NAME.

5, *dimidius*. Basal half of the thorax deep velvety black, anterior half grayish. Common.

c, *fulvivenosus*. The stripes on the wing covers tawny yellow instead of black.

d, *albivenosus*. Wing covers white, without any black marks except the marginal spot. A male.

e, *apterus*. Wingless and the wing covers much shorter than the abdomen.

f, *basalis*. Basal joint of the antennae dusky and darker than the second.

g, *nigricornis*. Two first joints of the antennae blackish.

h, *femoratus*. Legs pale livid yellow, the thighs tawny red. Common.

i, *rujipcdis*. Legs dark tawny red or reddish brown.

As will be seen from the historical notices which are given above, this insect was at first called the Hessian fly or Hessian bug, in Carolina. And as appears from the description given by Kirby and Spence, it was only the red larvae of these insects which were then supposed to be the depredators, no one being aware that the black bugs with white wing covers were the same insects in a more advanced state. As these larvae have a close resemblance to the common bed-bug (*Cimex lectularius*, Linnaeus) which through the Southern states is everywhere designated by its name in the Spanish language *chinche*,* when it was ascertained that they were a very different insect from the Hessian fly of New York, they were definitely distinguished by the name chinch bug, or chinch bug fly. It is altogether probable, however, that the latter was the term by which the winged insects were designated, and that the former was the name given to the larvae; and Kirby and Spence might well be at a loss to understand why the epithet "fly" should be given to an insect without wings, as this was represented to be. The name chinch bug has now become the established title of this insect, and as the same word has been adopted as a specific name in Natural History (e. g. *Argas chinche*, Gervais) it would be the most appropriate scientific designation for this species, had it not already received a different one.

The chinch bug was first scientifically named and described by Mr. Say, in a pamphlet (page 14) entitled "Descriptions of New Species of Heteropterous Hemiptera of North America," published at New Harmony, Indiana—the eight first pages of which appeared in the year 1831, the remainder the following year. This insect must have been much more rare throughout our

* For full philological information respecting this word and its use at the South I am under obligations to W. F. Brand, Esq. of Emmerton, Maryland.
country thirty years ago than it is at present, for Mr. Say had only met with a single specimen of it, an individual of our Variety *dimidiatus*, which he found on the eastern shore of Virginia, and he was wholly unaware of its importance in an economical aspect. He named it *Lygaeus leucopterus* or the white-winged Lygaeus. This genus now forms the Family *Lygaeidae*, and is chiefly characterised by having the scutel or triangular piece between the base of the wings short and not reaching the middle of the abdomen, the antennae inserted upon or below a line drawn from the eyes to the base of the beak, four-jointed with the last joint thickest or at least not more slender than the preceding one, and the thin membrane at the end of the wing covers with not more than four or five veins.

At the date when Mr. Say described this insect, M. Serville had proposed separating those species of the old genus Lygaeus in which the anterior thighs are swelled or thickened, into a distinct genus which he named *Pachymerus*. But as this name had anteriorly been applied by Latreille to another genus of insects, it became necessary to alter it; and Mr. Say therefore proposed abbreviating it to the name *Pamerus*, under which name he placed nine of the nineteen new species which he described in this family. The European naturalists have probably been unaware of this correction made by Mr. Say, and the following year M. De Laporte proposed to substitute the name *Aphanus* for that of Pachymerus. But M. Guerin had anteriorly given the badly constructed name *Aphaena* to another genus of insects, the orthography of which, when it came to be rectified, became Aphanus. As this name, therefore, could not be retained, Mr. Curtis proposed the name *Rhyparochromus* for these insects, which name has been adopted by M. Serville and the European naturalists generally. But the rule of priority will certainly give Mr. Say's name, Pamerus, the precedence of Rhyparochromus. It may be objected to this name, however, that it is a hybrid, not being regularly constructed nor yet a purely fantastic name. Yet under the circumstances, it appears to us it was more judicious and serviceable to the science thus to alter a name which had become current, than to abolish it and introduce a new one.
What has been stated will serve to give the common reader some view of the embarrassments often encountered in this vast science, in arriving at the correct designation for an insect. Especially in this country do we experience such embarrassments and are obliged in many instances to remain in doubt and uncertainty, from being unable to find in any of our public libraries those authorities a reference to which is indispensable for obtaining the information we desire.

The pamphlet of Mr. Say in which this insect is described is out of print and very scarce. Dr. Le Baron not having seen it suggested the name *Rhyparochromus devastator* as being an appropriate one for this insect. Although all the thighs are slightly thickened in this species, the anterior ones are not obviously more enlarged than the others, and are not sufficiently inflated to place it in the genus to which Dr. Le Baron assigns it, in which there is a striking contrast between the anterior and the four slender posterior thighs. In more than two dozen species of this genus which are now before me, this contrast is very plain and evident in every instance. Mr. Say therefore was clearly correct in referring this insect to the genus *Lygaeus* and not to his genus *Pamerus*, which, as we have seen above, is synonymous with *Rhyparochromus*.

This group of insects has been subdivided into quite a number of genera since Mr. Say's day, and the present species now pertains to the genus *Micropus*, a name meaning small footed or short legged, proposed by M. Spinola in his Essay upon the insects of this order, published in 1840, page 218. I announced this fact a year since in the Country Gentleman (vol. v, p. 396) in reply to the enquiry of E. C. Smith, asking the correct name of this insect. A communication appeared in the same periodical soon after (vol. vi, p. 106), stating among other things, that the genus Micropus had not been recognized by some of the standard writers upon this order of insects, and that "Herrick Schaffer would have placed the chinch bug, had it been known to him, in the genus *Pachymerus*"—the same genus in which, as we have seen above, Mr. Say long ago determined it did not belong! I deem it unnecessary further to notice an anonymous
writer, who is aiming to appear very erudite upon a theme on which he unwittingly betrays himself to be very ignorant.

Another species of Micropus, named falicus by Mr. Say, who discovered it in Missouri, I found common in northern Illinois in October, and I have also met with specimens of it in New Jersey in the month of May, though it has not yet occurred to my notice in the State of New-York. Whether it partakes of the injurious habits of the chinch bug I know not. It may be called the Black-veined Micropus, its wing-covers being dull white with black longitudinal stripes, following the veins to their tips. It is longer and also narrower than the chinch bug, being of a long linear form, 0.20 in length by scarcely 0.05 in width. It is black with the base of the thorax and the legs yellow.

The Black-veined Micropus has the base of the thorax elevated and smooth, forward of which is a transverse wide shallow depression, and forward of this is a slight elevation with a short wide longitudinal impression in its middle. The wing covers and wings reach only to the anterior edge of the last segment of the abdomen, and are frequently shorter with the wings wanting or merely rudimentary.

Its pupa is dull yellow, except the antenna, which are black, with short fine hairs, and are rather shorter and more thick than in the mature insect. Along the back it often shows two rows of black punctures, one situated upon each side of the middle of each segment.

Another insect which may frequently be met with upon the same flowers and leaves with the chinch bug, in Illinois and Wisconsin, from the fore part of July until the close of the season, so exactly resembles this culprit that no one would suspect its being different unless apprised of the fact. Indeed it is only by a very close inspection that the one can be distinguished from the other. In one instance this has been sent me as the chinch bug; my correspondent, as I suppose, on finishing his communication, happening to meet with this, immediately enclosed it in his letter, without a suspicion that it could be anything else than the insect of which he had been writing. It however is but little more than half the size of the chinch bug, is destitute of hairs, its surface being smooth and shining, and the thin membranous posterior part of the wing covers are without any distinctly traced veins. Though belonging to the same family it pertains to a different genus, named from the circum-
stance of the species being mostly found upon flowers, *Anthocoris* or flower-bug.

The *False chinch bug*, *Anthocoris pseudo-chinche*, is but 0.08 in length, and is black, smooth and shining, with its antennae, feet and four anterior shanks and knees pale dull yellow. Its wing covers are white, tinged anteriorly with yellowish, with a large triangular black spot across their middle, occupying the whole posterior part of the thick coriaceous portion, this spot being brownish on its anterior edge. The thorax has an impressed line or groove across its middle. The thin membranous part of the wing covers is somewhat transparent and clear, but a variety (which may be named *semiclarus*) occurs, in which its posterior half is perceptibly tinged with smoky. This species is closely related to the European species *minutus* Linn., and *nigrella* Zetterstedt, but is readily distinguished by the colors of its legs, not to mention other characters. Identical as so many of our American species of this order certainly are with those of Europe, it is possible that this species has been described by some author whose work I have not seen. Another small species resembling this in many points, the *Xylocoris domesticus* Hahn, appears to be as common upon this side of the Atlantic as it is in Europe, as is also the variety of this species, named *dimidiata* by Spinola and *Parisiensis* by Amyot and Serville.

This insect, so far as we yet know, is exempt from any molestation by predaceous insects and other animals. No bird probably has a relish for such an unsavory morsel as one of these fetid chinch bugs. And this is undoubtedly one of the chief reasons why no check is given to its multiplication, and when one or two favorable seasons arrive, it is able to increase with a rapidity and to an extent which has few parallels among the insect races.

Nor has any mode for destroying this insect or preventing its depredations, been discovered, of such efficacy as to bring it into public notice and favor. When they are migrating from one field into another, it is reported that they have been arrested by digging a trench before them, up the crumbling dirt of the sides of which, they are unable to climb; and when the whole colony is thus imprisoned, they have been covered with straw and burned. By burning the dry leaves of the forest in places where they have settled in numbers, multitudes have been destroyed. A subscriber to the Southern Planter (vol. xv, p. 275), says he knows that strong soap suds will kill them, when on corn, if a half gill or gill be poured upon each stalk—a labor not half so great as a single hoeing of the crop is. When this insect became so numerous in North Carolina, in 1839, Mr. J. W. Jeffreys proposed that the farmers and planters should all abandon the sowing of wheat for two or three years, he deeming this the only measure
by which it was possible to subdue it. Dr. Le Baron thinks it improbable that any remedy can ever be discovered whereby to prevent its devastations. My own belief is very different. I do not think Providence has sent any injurious insect into our world, but that when we come to study its history and habits, and become fully acquainted with its economy, we can discover some point where it is assailable, and human ingenuity will be able to devise methods by which it will be practicable, either to destroy the insect, or to shield the vegetation on which it preys, from its depredations. Though often, no doubt, much patient investigation and many experiments conducted by different persons will be necessary, before we can arrive at the most certain and successful remedies.

As regards the chinch bug, if the facts reported are true, we think they point us to a feasible mode for subduing it. They indicate that moisture is most uncongenial to this insect. If, when it is overrunning the land in myriads, a wet season arrives, it is at once quelled in its career. Mr. Williams speaks of its ravages as having been perceptibly checked by a single heavy rain. And it appears from the statement of Mr. Albert Burnet that so slight a circumstance as the dew evaporating before the morning sun, first upon the south and east sides of a field, often causes it to congregate upon those sides of the field exclusively. In view of these facts it would seem that by drenching that part of a field in which these insects are clustered, with water, by means of a fire or a garden engine, they may be washed from the plants and destroyed. Though it will be a formidable task to shower a large wheat field profusely, yet if the crop can hereby be saved from ruin, it will amply repay the expense. But commonly it is only a narrow strip upon one side of the field which will require this operation. And where there is a brook or stream of water passing through or adjacent to a wheat field, this measure can certainly be resorted to, repeatedly should it be necessary, at no great cost. When the small red bugs, the tender young larvae of these insects, have made their appearance and are clustered about the roots of the wheat plants, in the month of June, they can probably be more easily destroyed, than at any subsequent stage of their lives. And it is earnestly to be
hoped that some one who is conveniently situated for testing the efficacy of this measure, will do so, and make the result known to the public.

Burrowing in different parts of the stalks, rendering them dwarfish and often causing the heads to perish; small, slender, pale-green and watery-white shining maggots.

The larvae of several small wheat flies and barley flies of the genera Chlorops, (plate 1, fig. 4), and Oscinis (plate 1, fig. 5).

In Europe it has long been known that among the worst destructors upon the grain crops there, are the larvae of several small flies belonging to the genera Chlorops and Oscinis. Some of these attack the young plants, and taking their station slightly above the root destroy the central stalk. Others burrow in the stalk or straw, and others infest the heads. Thus every part of the plant finds an enemy in one species and another of this group of insects. And so seriously do they injure the crops on which they prey, that Linnaeus a century ago computed the loss occasioned by one of them (Chlorops Frit), which infests the heads of barley in Sweden, to amount to nearly half a million of dollars annually.

It has not hitherto been known that the wheat in this country was attacked by any insects of this kind. But I have the present season discovered these small flies in abundance, in every wheat field in my neighborhood. On sweeping with a net anywhere among growing wheat, a multitude of them will be gathered. They are of several different kinds and all appear to be of species distinct from those described in the works of Macquart, Zetterstedt, and other European writers to which I am able to refer. And upon examining the wheat stalks at different times during the season, the larvae of one and another of these flies are found therein—smooth, shining, footless little maggots, of pale green and watery-white colors, commonly imbedded in the straw in small burrows or cylindrical channels which they have excavated.

As these flies appear to be native species, it is probable that before wheat was cultivated upon this continent they sustained
themselves upon some of our wild grasses. Their numbers must therefore have been very limited at that period. But when wheat was introduced and became extensively cultivated, it gave them such an ample supply of most palatable nourishment that they have gradually increased and are now excessively numerous all over our land, laying every wheat field under contribution for their support. And I doubt not it is from the numbers of these and other insect depredators which abound upon our wheat, that we are no longer able to produce such crops of this grain as were uniformly harvested formerly, when our lands were newly cleared. How is it possible for wheat to grow with any thriftiness when it is incessantly assailed by such hosts of these enemies, bleeding it at every pore? And if any mode could be discovered by which our wheat could be protected from these depredators, I do not doubt that on our old lands which have been under cultivation a century, we could now, with our improved methods of tillage, rear crops of this grain, surpassing those which grew upon the same lands when they were newly cleared. And if wheat could thus be grown, the intrinsic worth and the market value of lands in the old settled sections of our state would be advanced probably one-half.

At the time of placing the specimens from which the accompanying illustrations were taken, in the hands of the draughtsman, I supposed I should obtain some one or more of the larvae of these insects, in its perfect state, and thus be able to present its history with some approximation to completeness, in the present report. But my efforts to rear them have been unsuccessful. And it will scarcely be worth while to state the situation in which one and another of these worms is found, and the manner in which it mines or otherwise injures the straw, until the particular species by which the mischief is done in each case, can be identified and named. For the present, therefore, I merely state what will serve to explain the accompanying figures, and give the reader some acquaintance with this group of flies as they appear upon the wheat in their perfect state.

These flies form a particular tribe or sub-family, named the Oscinides, the members of which may be distinguished from
those of the other groups of the extensive Family Muscidae in the Order Diptera, by their small size, by having the last joint of their antennæ globular instead of oval or oblong; by being destitute of winglets, those small scale-like appendages which occur at the base of the wings, having some resemblance in their shape to the bowl of a spoon; and the veins and veinlets of the wings being as they are represented in the accompanying figures.

One of the prettiest of the flies of this group, which we meet with upon growing wheat the latter part of June, pertains to the genus Meromyza, which is readily known from the other genera, by having the thighs of the hind pair of legs thick and appearing as though they were swelled. It is very similar to the European M. saltatrix Linn., but is larger, the stripes on its thorax are deeper black than those upon its abdomen, and here it is the latter stripes which are united or confluent at their ends and not the former. It may be named

The American Meromyza, M. Americana. It is 0.17 in length to the tip of its abdomen, and 0.20 to the end of its wings. It is yellowish white with a black spot on the top of its head, which is continued backward to the pedicel of the neck. Thorax with three broad black stripes, approaching each other anteriorly but not coming in contact, the middle stripe prolonged anteriorly to the pedicel of the neck and posteriorly to the apex of the scutel. Abdomen with three broad blackish stripes, which are confluent posteriorly and interrupted at each of the sutures. Tips of the feet and veins of the hyaline wings blackish. Eyes bright green. Antennæ dusky on their upper side.

Another minute pretty fly, often found with the preceding upon wheat, and resembling it in its colors, is generically distinguished from it by its short, thick body, its abdomen, when distended by a recent meal, being perfectly spherical and abruptly drawn out at its tip into a conical point. The second veinlet of its wings, moreover, is very oblique instead of being transverse as in all the other genera of this group. It thus belongs to Macquart's genus Siphonella, and the present species may be named in allusion to its plumpness

The obesa Siphonella, S. obesa. It measures only 0.09 in length, to the tip of its abdomen and 0.12 to the end of its wings. It is black and polished, with a slender stripe on the middle of the thorax, the scutel and the under side of the body bright sulphur yellow, the abdomen having a tinge of green beneath. Legs bright tawny yellow. Head yellowish white. Antennæ tawny yellow, their tips black. Two dots on the anterior edge of the mouth, a large egg-shaped spot on the crown, two short stripes low down on each side of the breast, and the anterior pair of feet, black.
In the genus Chlorops, as the name will indicate to those who are acquainted with the Greek language, the eyes are green. They might hence be popularly named the green-eyed wheat-flies. But as their scientific name Chlorops will be a more definite and convenient designation it will be better to adopt it as the popular name of these flies. Their bodies are commonly of a yellow color, varied more or less with black in the different species. One of these species was so abundant the latter part of June that at almost every step in any of our wheat fields a dozen or more of them could be seen. It may therefore be termed

The common Chlorops, C. vulgaris, (plate 1, fig. 4, the short line to the left of the figure indicating the natural length.) It measures 0.15 or a little less to the end of its abdomen and from 0.18 to 0.20 to the end of its wings. It is of a pale tawny yellow color, with a round black spot on the top of its head, and the tips of its antennae and of its feelers are also black. It has two black bristles at the end of the middle shanks, and one at the end of the forward ones, and rows of black bristles upon the thorax. On the top of the head (fig. 4 a) are two pairs of bristles inclining backward and two pairs inclining forward, the anterior pair of the latter being shorter. The abdomen is oval, and in its normal state is of the same color with the thorax; but from inclosed alimentary matter it becomes variously dis-colored, often showing obscure brown or reddish spots.

The feather-horned Chlorops, C. antennalis, is the same size as the preceding, but with the abdomen commonly shorter. It is pale yellowish varied with tawny and is whitish beneath. The antennae are pale orange, their tips black, and the bristle which arises from them, and which is simple in the other species, is here feathered or plumose. On the top of the head is a black spot and the feelers are also black. It is also clothed above with black bristles. The abdomen when dis-tended with aliment is broad oval and of a dull livid or pale brown color, with the sutures whitish.

The genus Oscinis is distinguished from Chlorops by having the coarse vein which forms the outer edge of the wing prolong-ed around the tip of the wing to the end of the inner of the two middle veins of the wing, at which point this marginal vein ab-ruptly becomes slender, (see plate 1, fig. 5); whereas in the genus Chlorops it is at the end of the outer middle vein that this thick robust marginal vein terminates, (see fig. 4 of the same plate). The species of Oscinis are further distinguished from those of Chlorops by being of a smaller size and of black instead of yellow colors. Several species of both these genera, in addi-tion to those here presented were met with upon wheat, but I defer a description of them to a future occasion.

The shank-banded Oscinis, O. tibialis, (plate 1, fig. 5) is 0.08 in length to the tip of its abdomen and 0.11 to the end of its wings. It is black, polished and shining, its shanks and feet being pale dull yellow, the hind shanks having a broad
black band towards their bases (as shown in the separate illustration of the leg, fig. 5 a), and the middle ones having a narrower faint blackish one; the tips of the feet being also black. Bristle of the antennae black. A slight transverse tawny yellow line above the base of each antenna. The two veinslets of the wings are distant from each other three the length of the second or outer veinslet.

Two of these flies were enclosed in a vial when captured. Adhering to one of them was a small bright red mite, which is parasitic upon these flies. This fly died in about three hours, the other remaining brisk and lively twelve hours afterwards, when it was removed for examination.

The yellow-septed Oscinis, O. coxendix, is 0.07 in length to the tip of its abdomen, and 0.10 to the end of its wings. It is black with a white face and buff yellow front shaded to blackish on the crown, where is a polished deep black semi-circular mark, its concave side facing backward. Its anterior hips are testaceous yellow. The veinslets are less than twice the length of the second from each other.

The thick-legged Oscinis, O. crassifemoris, is the same size with the last, and is black with a white head and the thorax with a gray reflection. The last joint of the antennæ with its bristle is black. The legs are pale yellow, the tips of the feet black. The veinslets are so near each other that they are almost united. In the female the abdomen is egg-shaped and polished, its apex drawn out into a long sharp-pointed ovipositor. The middle and anterior thighs are rather short and thick, the hind ones longer and cylindrical.

The fly figured, plate 1, fig. 3, is a much larger species pertaining to another group. It occurs in abundance upon the heads of wheat the latter part of June. This is the species which was currently regarded in the circle of my acquaintance as being the fly from which the little yellow maggots, the larvae of the wheat midge, proceeded, until I came to investigate this subject, and discovered in our country the real culprit (Cecidomyia Tritici) described by Mr. Kirby. As I have had occasion repeatedly to allude to this popular mistake, and this fly has received no name, as I have been able to discover, by which it may be specified, I here present a name and description of it, and also of another common species closely related to it. I as yet know nothing of their habits, beyond the fact that they are both numerous, hovering over and alighting upon the heads of wheat at the time they are in flower.

The deceiving wheat fly, Hylemyia dceptiva, is a quarter of an inch in length to the tip of its wings. It is ash gray, with black legs, antennae and feelers. Abdomen with a row of longitudinal brown-black spots forming an interrupted stripe along its middle. Thorax in a particular reflection of the light showing a brown stripe anteriorly and on each side of it a brown spot. A tawny yellow spot upon the front, more conspicuous in the females, and passing into a black stripe upon the top of the head.

The similar wheat fly, Hymelgia similis, resembles the preceding, but is a size smaller, measuring 0.22 in length, and of a paler shade of ash gray, with the tawny yellow spot upon the front replaced by black, and is destitute of the brown stripe and spots upon the thorax.
Myriads of small pale maggots crawling from the mow of wheat soon after it is placed in the barn; the kernels of grain shrivelled and dwarfish.

The wheat-mow fly, *Agromyza Tritici*, new species (Plate 2, fig. 1).

Several years ago a farmer in my neighborhood, soon after gathering his wheat into the barn, found countless myriads of small worms were crawling out of it, literally covering the mow of grain and wandering away from it to every part of the barn. These worms it is evident had just now completed their growth and were crawling about in search of the moist earth, wherein to bury themselves, to repose during their pupa state. It would seem that some cause had made them later than usual in reaching maturity; and had the wheat remained in the field a few days longer, they would have escaped from it there, so generally that no notice of them would have been taken, and the fact would never have been known that such an army of insects had had their subsistence upon this crop.

Alarmed with the numbers of these worms, and fearing they would perhaps wholly destroy the mow of grain, the proprietor had the whole of it threshed immediately. I happened to visit the barn as the threshed grain was being winnowed, when the above facts were communicated to me. The heap of uncleaned grain was literally alive with these worms and the cracks in the floor were filled with them. The kernels of wheat appeared to be shrunk in the same manner as when they have been infested with the wheat midge. I put a number of these worms into a small box, with some of the chaff and grain. Other engagements diverted my attention from this subject and it was wholly forgotten until many months afterwards, when, happening to open the box, I found in it quite a number of small flies, which had completed their transformations and perished in their confinement. It therefore appears that it is by no means essential to these worms to bury themselves in the moist earth, though that is doubtless their natural habit. But if they can find any crevice in the dry barn where they can stow themselves and lie undisturbed, it is all they require in order to complete their transformations.

The worms, according to my recollection, were much like the little yellow maggots of the wheat-midge, but were of a dull
white color, and rather larger. Their transformations are like those of flies generally, the outer skin of the larva or maggot contracting and becoming dry and hard, and forming the case within which the insect lies in its pupa state. When the larva skin of this species is thus dried, with the pupa reposing within it, it appears as represented, plate 2, fig. 2, 2 a being a highly magnified view of its upper and 2 b of its under side. It is but the tenth of an inch long, and 0.03 in diameter; it is shining and of a pale yellow color, of an oval or rather an elliptical form, more rounded at the head and pointed at the opposite end, the segments distinctly marked by transverse constrictions.

These flies appear much like the common house fly, reduced to an infantile size. I supposed they would prove to be one of the European species of Oscinis, until I came to examine them, when I found that, though they belong to the group Oscinides, they are generically distinct from both Chlorops and Oscinis, in having bristles or hairs upon the face as well as upon the crown, and in having the two little transverse veinlets of the wings situated quite near the base. They thus pertain to the genus Agromyza a name meaning field flies, as this genus is characterised by Macquart, and to his section AAA, and to his subsection DDD, but they are clearly distinct from either of the species which he describes; nor am I aware that any of the members of this extensive genus have hitherto been noticed as depredators upon wheat, like their kindred of the genera Chlorops and Oscinis. The present species may therefore be designated

The wheat mow fly, Agromyza Tritici, (plate 2, fig. 1.) It is 0.08 in length, and to the tip of the closed wings 0.11. It is black, with a broad pale reddish yellow band upon the front above the base of the antennæ, and the mouth broadly margined with dull yellow. The legs are brownish black, the knees slightly marked with pale yellow. The wings are notched on their outer margin near the base, at the apex of the first vein. The veinlets are situated near the base of the wing and near each other; and the inner middle vein is not prolonged beyond the second veinlet.

In the same box in which these flies were hatched was found four individuals of a parasitic fly which had evidently come from some of the worms of the wheat mow fly. They pertain to the Family Proctotrupidae of the Order Hymenoptera, and to the genus Diapria. They may therefore be named

The wheat mow fly’s parasite, Diapria Agromyzæ. They measure 0.06 in length, and to the tip of the closed wings 0.68. They are black and shining, with shanks
thickened towards their tips, the hind pair being very long, and the legs are pale yellowish, with the thighs and the thickened ends of the shanks black. The abdomen is elliptic. The antennae in the males are thread-like and nearly as long as the body, composed of fourteen joints, which are very distinct, equal, oval, a third longer than broad, the apical one being a little longer and egg-shaped, and the basal one club-shaped and thrice as long but scarcely thicker than the following ones. In the female they are shorter and composed of twelve joints which are compacted together, the three last enlarged and forming a kind of knob or club, the last joint nearly as long as the two which precede it, its end bluntly rounded.

Upon the heads and stalks in June and July, exhausting the juices of the kernels and rendering them dwarfish and shrivelled; exceedingly minute, active, long and narrow, six-legged insects, of a bright yellow or of a shining black color.

The Wheat Thrips, Thrips Tritici, new species.
The Three-banded Thrips, Coleothrips trifasciata, new species.

My attention has been called to these insects by a letter from David Williams, dated Geneva, Wisconsin, July 9th, 1855, which says: "Enclosed I send you specimens of a minute little insect that is causing some alarm in this vicinity. They are found in all blossoms in great numbers. They first made their appearance about the middle of June, or at least they were then first noticed, so far as I have heard. For about two weeks they were found in the blossoms of wheat and of clover, causing numbers of the blossoms to wither, and in some cases the kernel was also attacked. About a fortnight ago we had a very heavy fall of rain, which appeared to destroy them; but within a few days I have noticed their reappearance in countless numbers. They are very nimble, requiring good eyes and ready fingers to secure them, and I was obliged mainly to my wife for the capture of those which I send you."

The insects alluded to in the above extract are so minute, that had only two or three specimens been sent me, I should have been unable to give any definite account of their species. An acknowledgment is due Mrs. Williams for the number of these insects which she enclosed in the quill—a task which the bungling fingers of a man could scarcely have accomplished. Among them I find specimens in all the stages of their growth, and am hence able to present a tolerably complete history and description of the species; although it is only from living specimens that such
minute objects can be satisfactorily studied, and described with that precision and fullness which science requires.

Insects of the kind to which these belong may be distinguished from all others by their wings (see the accompanying figure, e), which are long, narrow and strap-like, and in most of the species are fringed on both sides with long hairs like eye-lashes. Their mouths are also different from those of all other insects, being nearly intermediate between the beak or bill with which some of the orders of insects puncture and suck the fluids on which they subsist, and the jaws with which all the other orders gnaw the substances on which they feed. These insects originally formed the genus Thrips, placed by Linnaeus next to the plant-lice, in the Order Hemiptera. But as their wings and the structure of their mouths is so wholly unlike that of any other insect, naturalists of late rank them as a distinct order, which is named Thysanoptera, i.e. fringe-winged. This order contains the single family Thripidae (currently written Thripidae by authors, but incorrectly), which is divided into seven genera by Mr. Haliday, whose researches in this group have been unsurpassed. About fifty species of these insects are known to the entomologists of Europe. They are all of small size, more than half of them being only about the twentieth of an inch in length, or less, and but few slightly exceed the tenth of an inch; though recently some have been found in Australia which are three times as large as any which were previously known.

Most of the species are found in the flowers of different plants. They feed upon the juices, and are very injurious, especially in hot-houses, causing small dead spots upon the leaves and flowers wherever they wound them. Some of them also infest melons and cucumbers. One species is very injurious to the olive trees in Italy. Another attacks peaches and other fruit to a mischievous extent. But the species which appears to do the greatest amount of damage is the grain Thrips (T. cerealium). Our first accounts of this insect are from Mr. Kirby, in 1796 (Linnaen Transactions, iii, 246), who however supposed it to be the Thrips physapus of Linnaeus, until Mr. Haliday showed it to be distinct from that species. An excellent history of this
species is published by Mr. Curtis in his paper on insects affecting the corn crops, in the Journal of the Royal Agricultural Society, vol. vi, p. 499; and figures of the insect and its dissected parts, in the several stages of its growth, from Mr. Haliday's manuscripts, are given in the list of Homopterous insects in the British Museum, part iv, plates vi, vii and viii. In the year 1805, one-third of the wheat crop in the province of Piedmont is said to have been destroyed by this seemingly insignificant little insect. Mr. Kirby says it is by far the most numerous of any insect upon the wheat in England; he does not think he ever examined an ear of wheat without meeting with it. He says it takes its station in the longitudinal furrow of the seed, in the bottom of which it seems to fix its beak, and probably sucks the milky juice which swells the grain. Thus by depriving the kernel of part, and in some cases perhaps the whole of its moisture, it causes it to shrink up and become what the farmers call "pungled." According to Vassali Eandi, it also gnaws the young stalks just above the knots, causing the ear to become abortive in consequence of these wounds. It is late sown wheat which is reported to be chiefly injured by this insect; and early sowing is the only remedy which I find spoken of by those who have written upon it.

Our American species of this order of insects are probably as numerous as those of Europe, but none of them have been examined and described, except one which occurs in small hollows gnawed in young apples, of which some account was given in my last report. I have repeatedly noticed different kinds of these insects upon growing wheat in the State of New-York, but not in such numbers that I supposed they were doing any appreciable injury to the crop. One of these species is very similar to the Phleothrips Statice, Haliday, which in Europe occurs in myriads upon the flowers of the Thrift (Statice Armeria Lin.) That which I have met with most common, upon wheat in my own vicinity is the Three-banded Thrips, hereafter described. Dr. Harris has also seen the larva of a Thrips (Treatise, p. 205) which he supposes to be the T. cerealum. He merely states that it was orange-colored; and as the larva of T. cerealum has a black or dusky head and two spots of the same color on the fore part of the thorax, and its antennae and legs have alternate
blackish and whitish rings, it is more probable that his specimens were the same which I now have before me from Wisconsin. Be this as it may, the communication from Mr. Williams is important, as making us acquainted with an enemy of the wheat crop of which we heretofore have had no definite knowledge, and which will undoubtedly at times be quite detrimental in the wheat-growing districts of our country.

Although this species, like many others in this order, occurs upon the flowers of different plants, it is upon wheat, in all probability, that it will be oftenest noticed, and to which it will prove most injurious. It may therefore appropriately be named the wheat Thrips, T. Tritici.

Attached to the surface of the shrivelled flower-leaves in the quill in which these insects were sent me, I meet with what I doubt not are their eggs (see figure a, next page,) deposited probably by one of the females after being imprisoned. They are so minute as to be wholly invisible to the naked eye, except when placed upon clean white paper, when they can be merely discerned, appearing like an atom of dark colored dust. Under the magnifier they are discovered to be of a bright red color, like particles of sealing-wax, and of an oval almost globular form; and they are attached to the leaf by a short, thick, crinkled stalk or stem, which is of a dull white color.

The larve (fig. b) resemble the perfect insects, except that they are wholly destitute of wings and are smaller and softer, with the several segments of the body more equally and distinctly separated from each other by transverse, constricted lines. They are throughout of a bright orange-yellow color, of the same hue as the worms of the Wheat-midge, which worms, however, small as they are, appear like giants when placed by the side of these larve.

Two minute black dots upon the anterior end of the head are the eyes. The head is square and but half as broad as the second segment, which is broadest at its base, narrowing forward to its apex, where it is of the same width as the head. The third and fourth segments are slightly longer and wider than the second, and much longer than the following ones, which are about equal to each other, the apical one being narrowed, of a tubular conic form and two-jointed. The body is quite convex above and beneath. The legs and antennae are much like those of the perfect insects, except that they are shorter. The two minute joints at the end of the antennae (see figure f) can commonly be perceived in the larva state of these organs.
During their larva state the insects of this order are very nimble, skipping and throwing themselves to a distance by striking their abdomen suddenly against the surface upon which they are placed. In their pupa state they are much more slow and sluggish in their motions, and become quite active again when they reach their perfect state.

The pupae are like the perfect insects in size and shape, except that their wings are short or rudimentary. At first they are merely oval scales, situated upon each side of the two last segments of the thorax. Subsequently they become more developed so that they reach to the middle of the abdomen or slightly beyond, but they are still incapable of being used for flying. The species under consideration, when in its pupa state, is of the same yellow color as when a larva, but the abdomen, at least towards its base, is paler than the thorax.

The perfect insect (figure c) is but four hundredths of an inch (0.04) in length. Its length is indicated by the short line near the left forward leg in the cut. It is thus a fourth smaller than Thrips cereulium, and instead of being black like that species, this retains the yellow color which it has when a larva, the head and thorax (which includes the three large segments next to the head, from each of which a pair of legs arises, as shown in the figure) being of a deep orange yellow, or like the yolk of an egg, whilst the abdomen is paler, and the legs are yellowish white. The antennae (the apical joints of which are represented more enlarged at f) are whitish, tinged towards their tips with dusky.

The fringes of the wings are also dusky. The fore legs are shorter but no thicker than the others. All the other details of its structure are so distinctly represented in the figure, that a particular description is unnecessary.

The species which I have noticed as the most common upon wheat in Washington county, New-York, may be named the Three-banded Thrips (Coleothrips trifasciata). It is clearly distinct from the three European species included in this genus, though nearly related to the C. fasciata, Lin. It is nearly double the size of the wheat Thrips, being 0.07 in length, and is so distinctly marked that even our preserved specimens can be readily discriminated. It is of a black color, polished and shining, with the third joint of its antennæ white, and its wings black or dark
smoky brown, with three broad white bands, whereof one is upon the base, another across the middle, and the third, which is somewhat narrower, upon the tip. The wings show two longitudinal veins, but no transverse ones were noticed upon them, nor could I discover any fringe upon either their outer or inner margin. The fore legs are larger than the others, and the antennæ (see figure g of the preceding cut, representing the head, eyes, left antenna and base of the right) instead of arising far apart as in most of the species I have examined, come out from the front of the head close together, and are composed of only five principal joints, of which the two first are short, and a third thicker than the others, which are long and cylindrical, the last one gradually tapering to a slender point, its apical portion being divided into small indistinct segments.

This species is common upon wheat as early as the first of June. When the grain ripens it probably forsakes it and becomes dispersed upon plants which flower later in the season; for I have met with it upon flowers of tanzy (Tanacetum vulgare) the last of July.
2. INDIAN CORN.

AFFECTING THE STALKS.

Severing the young stalks by night at or near the surface of the ground; a thick cylindrical pale dull colored worm an inch or more in length.

Cut-worms, the larva of different species of Agrotis, (plate 3, fig. 1, 2 and 6.)

Common as the cut-worm is in all parts of our State and country, our knowledge of it is still very imperfect. I remember in my boyhood it was a subject of discussion in my neighborhood, whether if these worms were cut in two, both ends did not live, thus producing two worms where but one existed before. Though at this day I suppose no such absurd idea is anywhere entertained, yet with regard to the transformations of these worms, and their economy generally, very little authentic information is possessed. This clearly appears from the following enquiry from West Haven, Ct., July, 1855, addressed to the Albany Cultivator (third series, vol. iv, p. 115). “Will some of your readers inform us how the Cut-worm is produced—whether from the miller, or whether they bring forth their young like the rabbit or any of the animal creation? I would like to know also whether one kind of soil more than another, or whether different manures, coarse or fine, have a tendency to increase their numbers. Their name is legion with us, this season. More than thirty have been found around one cucumber hill. Whole fields of cabbages have been cut down in a night. The subject of their production has been up for discussion, but no one seems to know, nor is there any author that we have that throws any light on the subject. I have had some experience relating to their production, but it is so at variance with my previous ideas that I want more light before publishing it.”

Whether the cut-worm is more numerous in one kind of soil than another, I am unable to say. The soil of my own neighborhood is a gravelly loam, and in this the cut-worm is common. I presume it is equally common in sandy and clay soils. In one instance, at the bottom of a bowl-shaped hollow, where the soil
partook of the nature of a stiff clay, a number of cut-worms were found, when there were scarcely any in the surrounding gravelly soil; but it was probably the more juicy, tender growth of the corn in this damp hollow, which caused the worms to gather there, rather than the nature of the soil.

I do not think the fertility of the soil, or the kind of manure which is applied to it, has any influence upon these worms, except in making the plants grow more succulent, for it is vegetation of this character which appears to be their favorite food. We all know these worms are common in our highly manured gardens. And I have never found them more plenty than on one occasion among beans planted upon a hill-side, so barren that it was thought nothing else could be raised there.

The biography of these worms is briefly as follows: The parent insect drops her eggs upon the ground, the latter part of summer. These soon hatch, and the young worms which come from them crawl into the ground and feed upon the roots and tender shoots of herbaceous plants. When cold weather arrives they descend a few inches below the surface and there lie torpid during the winter, and renew their activity when spring returns. It is not until they have nearly completed their growth, in the month of June, that they show that habit which renders them so injurious, and has acquired for them their name, "cut-worm." They then crawl from the earth, by night, and with their sharp teeth cut off the young succulent plants of maize, cabbage, beans, &c., almost as smoothly as though it were done with a knife. When daylight approaches, each worm crawls into the ground again, entering it within a few inches of the plant it has severed—the newly disturbed and rough appearance of the dirt showing the exact spot where it has gone into the ground, and rendering it easy to uncover and destroy the worm. Having got its growth it forms a little oval cavity in the ground, within which it lies and changes to a pupa or chrysalis. In this state it has some resemblance to a long slim egg of a chestnut brown color, having several impressed rings or joints towards its pointed or tail end. From this pupa, in three or four weeks, hatches the perfect insect, which is a dark colored miller or moth.
Every observing person is aware there are several kinds of these worms, differing from each other in the color of their heads, the stripes upon their bodies, and in their habits. But unfortunately we do not yet know which particular species of moth it is which either of the kinds of these worms produces. I have repeatedly endeavored to breed the moth from these worms, by placing them in cages into which I transplanted young corn, beans, &c., and also by placing bell-glasses over corn hills where worms had buried themselves. But I have never been able to succeed. The worms on finding themselves imprisoned, refuse to eat, and hurriedly crawl around and around the inner side of their prison, night after night, until they literally travel themselves to death. They are by no means such sluggish, stupid creatures as one would suppose from seeing them in the day time. By night they are as active as any other animal whose skin is stuffed and distended with food as theirs is. They are evidently able to crawl quite a distance in a single night. It is the common opinion that they are always bred in the ground near the spot where they do their mischief. But I suspect they are everywhere wandering about, nightly, in search of such tender, succulent plants as will furnish them a dainty repast, and that they thus in many instances enter our gardens and corn-fields from the surrounding enclosures. They certainly, if so inclined, could travel across the largest of our arable fields in a few hours.

The following short descriptions of the different kinds of cut-worms which have fallen under my notice, and their habits, I extract from my manuscripts. All these worms, except the White one, are about an inch and a quarter in length when at rest, and an inch and a half when crawling. They all have four polished elevated dots upon each segment, on the back, and a few others which are less distinct, upon the sides, each dot bearing an exceedingly fine hair.

The Red-headed cut-worm is of a dull pale brown color, without any stripes, and may be distinguished from all the other kinds by its head, which is of a tawny red color, instead of smoky yellowish as it is in each of the following, except the last one. Common in corn-fields, cutting off the plants slightly
below the surface of the ground, and thus always destroying them. On Staten and Long Islands, I am told, this species is popularly named the "Tiger worm," from its destructive habits, and that the name cut-worm is there applied only to the next species.

The Striped cut-worm is dirty whitish or pale smoky, with darker brown stripes, of which there are two along the back and three broader ones along each side; dots black, as they are in the preceding species, but not so minute. This is the most common kind in corn-fields, cutting off the plants half an inch above the ground; hence the stalk frequently shoots up again, from the middle of the stump. This occasionally occurs among beans also. It buries itself but slightly, and may sometimes be found with half its back exposed, even though the sun be shining clear and hot.

The Faintly-lined cut-worm is dull brown, with very faint pale longitudinal lines, and the polished dots but little darker than the general color. Found in cornfields, but more commonly in gardens among cabbages and sometimes among onions. Buries itself but slightly.

The White cut-worm is smaller, being scarcely an inch long when at rest. It is dull white, with black dots and no stripes or lines except a row of very faint brownish touches along the upper part of each side. It is rare, a single individual being occasionally found among corn and beans.

The Black-headed cut-worm is dull dark brown, with faint traces of pale lines, and its head deep black. This is probably what is named the "Black worm" in some neighborhoods. It is the most common kind among beans, cutting them off slightly below the surface, and drawing the severed stem into the hole where it buries itself, and there feeding upon it during the day, till the whole is devoured, or only pieces of the wilted leaves remain, plugging up the entrance of the hole. Either the Striped or the Lined cut-worm frequently treats corn in this same way. Hence the stump may often be found without any wilted leaves lying near it.

There are doubtless other species of cut-worms which have not yet presented themselves to my notice, my investigations of
these insects being as yet far from complete. My young cucumbers being always enclosed in boxes open at the bottom and top, are never molested by cut-worms, and seldom by other insects; hence I know not the worm which depredates on them.

As already stated, the particular species of moth or miller into which either of our American cut-worms changes, has never been ascertained. Most of the species, however, pertain to the genus *Agrotis*, of the family **Noctuidæ**, or Owlet-moths. In England the insects of this genus are named "Dart moths," from a peculiar spot or streak which many of them have near the base of their fore wings, resembling the point of a dart or spear. Much the most common species of this genus in the state of New-York, can be nothing else than the **Gothic Dart Agrotis sub-gothica** of the British entomologists, (Plate 3, fig. 1). This was first described by Mr. Haworth in the year 1810, and is current in all the books as a British insect. Mr. Stephens, however, says it is very rare, only three or four specimens having been found in England. I doubt not it is an American insect, the eggs or larvae of which have accidently been carried to England, probably in the earth in which plants have been transported thither. Here it is one of the most common of those moths which come in at the open windows of our houses on warm summer evenings, attracted by the lights of the candles. I have thus taken more than a dozen specimens in an hour. It begins to appear early in July and continues till September, and in Illinois I met with it on one of the last days of this month. Its wings when spread measure from over an inch and a quarter to an inch and a half across. It is of a grayish-brown color, and the fore wings have a broad whitish stripe on the outer margin from the base to beyond the middle, and another branching from this and running through the centre of the wing. Between these whitish stripes is a pale triangular spot having its outer side wholly confluent with the outer stripe, and back of this is a second pale spot which is kidney-shaped, the space before, between and behind these spots being black or dark brown. And extending from the base of the wing along the inner side of the inner stripe is a broad black or dark brown streak (representing the dart head
above alluded to,) which streak is crossed by two slender pale lines, these lines not parallel with each other. This last mark with the two pale lines across it, will alone distinguish this from all our other moths.

Our next most common species is the Devastating Dart \emph{Agrotis devastator}, (Plate 3, fig. 2,) thus named by Mr. Brace in the year 1819, in a short article upon the cut-worm, published in the first volume of Silliman's Journal, page 157. And it appears to be this same species, which has recently been figured and named \emph{Agrotis Marshallana} by Mr. Westwood, from a single specimen found in England by T. Marshall, Esq., (Humphrey's British Moths, vol. i, p. 122.) In this species the wings when spread are from an inch and a half to over an inch and three-fourths across. The fore wings are grayish brown, and are crossed by four equidistant wavy whitish lines, which are edged more or less with blackish. But commonly only the last one or two of these lines can be perceived; and the last line has a row of blackish triangular spots, like arrow heads, along its anterior side, their points directed towards the base of the wing. Often these spots are so obliterated that only one or two of the middle ones can be discerned in a particular reflection of the light. But it is by these spots more than any other character that I discriminate specimens of this species; for it is variable, with its marks obscure and more or less obliterated, from its wings when flying having been fluttered and rubbed against grass, leaves, &c., as is apt to be the case with most of the insects of this order.

A third species, also very common, (Plate 3, fig. 6,) differs generically from the two preceding, and appears to coincide more closely with \emph{Graphiphora} than with any other genus characterised by European writers. It is named the clandestine owlet-moth, \emph{Noctua clandestina}, by Dr. Harris. It is of an obscure brown or gray color, its wings when most perfect marked as represented in the figure. Our illustrations of these three species are quite exact, and will give the reader a much clearer view of the complicated markings of their wings than he can obtain from any written description.
The insect figured in Dr. Emmons' volume, plate 45, fig. 2 and mentioned in the text as being a common species of Agrotis, is the Hadena amica of Stephens.

Although more than a dozen other species of Dart-moths are known to me, those now described will suffice as examples of the insects whose eggs produce the cut-worms. Though so common, they are seldom seen in the day time, being then at rest, secreted in dark situations, such as the crevices in stone walls and the cracks under the clapboards of buildings. By looking behind the window-shutters of my office at any time in July or August, I am able to obtain specimens of the Devastating Dart and one or two other less common species.

These worms have several natural enemies. That universal pest of the cornfield, the crow, visits the fields, equally as much to obtain cut-worms as for corn, and would probably do but little injury to the latter if he could find worms enough to glut his appetite. Numbers of them are also destroyed by predaceous insects. One of the most common of these is pretty generally known to our farmers, who sometimes designate it the "cut-worm's dragon," from its singular form and ferocious habits. It is a large black and rather slender and flat larva of a beetle of the family Carabidæ, and I presume it is the Pæigus caliginosus, but those individuals which I have attempted to rear have always perished before completing their growth. It is very agile in its motions, and roots and buries itself under the loose dirt with facility. When not glutted with food, it is running about incessantly, in search of these worms, and slays them without mercy, with its powerful jaws seizing them commonly by the throat, and regardless of their violent writhings and contortions, sucking out the contents of their skins. M. F. Morrison, of Bath, Steuben co., N. Y., gives some interesting particulars of another insect enemy of the cut worm, in the Albany Cultivator, vol. v, page 18. He says, "A few years since a remarkable insect, somewhat resembling the black wasp, but longer, shaped somewhat more like the hornet, but of a shining black, and very active, was pointed out to me as the natural enemy of the grub worm. Its evolutions when on the ground were similar to that
of the hound upon the track of the hare. Its head was down, as if in the act of smelling, and every few minutes it would dig with its fore feet in the manner of the dog. At length it dug up a worm, stung it to death, and left it. On a succeeding day I saw the same insect engaged in burying the victims of its warfare. A hole was excavated in the soil sufficient to deposit the worm by the use of its fore feet. The dead worm was then seized by the forceps jaws of the insect, who drew it backwards into the hole into which it entered in rear of the worm, and from which it immediately emerged, and scraping the earth together raised a tumulus over the grave."

As to the best modes for subduing the cut-worm and guarding against its ravages, only a few words will be necessary, as this topic has been so often discussed in our agricultural journals. Commonly only one or two stalks in a hill of corn or beans are cut off, and the remainder are left unmolested, the worms appearing to require but a few meals of this kind, just as they are on the point of changing to pupae. It is well, therefore, to plant so much seed as will enable these depredators to glut their appetites without taking all the stalks in the hill. Observation has long pointed to this as a precaution which should always be taken. Hence the old rule as to the number of kernels which should be planted in each hill of corn—

"One for the black-bird and one for the crow,
Two for the cut-worm and three to grow."

But occasionally these worms are so numerous that active exertions must be put forth to save the crop from destruction. And general experience shows we have as yet only one resort which is perfectly certain and reliable, to wit, digging the worms out from their retreats and destroying them. To go over a large cornfield carefully, on this errand, and promptly as the exigency of the case demands, is quite a formidable task. Still, every one will perceive on a moment's reflection that when this measure is necessary to save the crop, the same amount of labor can scarcely be bestowed elsewhere so profitably.

It however is very desirable that some effectual and more speedy mode of combating these insects should be discovered. So long ago as 1817, a notice in the newspapers stated that making
a few holes about the hills with a sharp stick was an easy way to entrap these worms, as they would fall into such holes, and being unable to crawl out of them, would perish—some of the holes being found half full of worms thus gathered in a single night. A writer in the Michigan Farmer, whose communication was fully noticed in the Country Gentleman of June 7th, 1855, bears strong testimony to the efficacy of this measure. From my own observations it appears that these worms are never able to crawl the length of their bodies up a perpendicular bank of earth, before they loose their foothold and fall. I hence presume the measure above spoken of will be effectual. Indeed, if my supposition is correct, that these worms mostly come from the surrounding fields, to the places where we notice them, I have thought that a single deep furrow, struck around the outside of a field or garden, when the worms are first beginning to appear—any break in the land-side of the furrow being repaired with a hoe—would form a barrier over which it would be impossible for them to make their way—thus protecting the whole field effectually and at a very trifling cost. I hope in one or two summers to complete my observations so that I can speak with more confidence upon this subject than I am able to do at present.

Crowded together and covering the stem which bears the ear; small dull-green and reddish lice, slightly dusted over with a fine white powder.

In August, the person who is selecting soft corn for boiling, will sometimes come to an ear, the stem of which is entirely covered with vermin. On examining them they are perceived to be small plant-lice of a lurid green color, intermixed with slightly larger dull reddish ones, and an occasional individual is found among them having wings and a black body. They are thinly dusted over with a fine white powder, like meal, and scattered about among them are seen the empty skins which the larger ones have shed. Each individual is stationary, with its beak inserted into the stalk, sucking its nourishment therefrom. They continue upon those stems where they have once established
themselves, until the corn is cut down or ripens and the sap ceases to circulate in the stalks, whereupon they perish. They occur upon no other part of the stalk except the peduncle or stem which bears the ears. And such a multitude of them as is found clustered together upon this stem, of course abstracts from it much of the sap which should go to nourish the ear and swell the kernels. Should these insects, therefore, ever become multiplied so as to infest a considerable portion of the ears in a field, it is evident they would do much injury to the crop. And like other kindered insects, it is probably they will at times become thus multiplied.

These insects belong to the family **Aphidae** in the order **Homoptera**, and to the genus **Aphis**. They are plainly a different species from one which infests the maize in Europe, the *Aphis Zee*, of Bonafous, described in the Annals of the Ent. Soc. of France, vol. iv, p. 658, and I propose to designate them the **Maize Aphis, A Madis**. The remedies for insects of this kind were treated of in my first report, under the apple plant-louse, and it only remains for me to give a description of this species in the different stages of its growth.

The **larva**, when newly born, is 0.03 in length, with the opposite sides of its body parallel, or very slightly wider posteriorly; of a yellow color, the hue of bees-wax, the head pale watery yellowish, the eyes black, the antennae, legs and beak white, the latter long, reaching beyond the base of the hind legs, the nectaries or honey tubes short, merely slight tubercular elevations, and white. These, I think, are individuals which are destined to acquire wings, whilst those which are remain without them are pale green, much the same color with the surface on which they are placed, the thorax and the tip of the abdomen greenish white, the head slightly dusky, and the tips of the antennae, legs and beak acquiring a blackish tint soon after birth.

These latter larvae grow to an oval form and a dull green color, with the head and thorax blackish, the abdomen above with two rows of black spots along the middle, the anterior spots confluent transversely, forming a short band, and with three bands at the tip, and an additional row of black spots upon each side.

The **wingless females** are dull blackish faintly tinged with green, the color obscured by a glaucous bloom or fine powder with which they are dusted over, the head and commonly two bands upon the thorax smooth and black, with spots of the same along the sides of the abdomen and sometimes upon its middle also, the tip of the abdomen drawn out to a black point with two smooth black bands forward of it, the nectaries black and their length about half equaling the distance from their base to the tip, the antennae black and nearly half as long as the body, the legs black with the shanks whitish except at their tips. They are of a plump oval form, rather broadest back of the middle. Their beak is pale, its tip black; it arises from the lower part of the head and reaches only to the base of the middle legs, between which is a deep groove for its reception when at rest.
The yellow larvae first spoken of are about as numerous as the green ones, and acquire a pale obscure red color, dusted over with a fine whitish powder. They change to pupæ, which are known by having a scale on each side of the body, which is the sheath in which the future wing is enveloped at this period. These scales are pale yellowish, their tips dusky. The pupæ are 0.06 in length, dull red and dusted over with a glaucous powder, oval and less plump and convex above than when they were in the larva state; their heads are dusky, antennæ obscure yellow with dusky tips reaching to the base of the wing scales, legs dusky, the thighs except at their tips, and also the anterior shanks obscure pallid.

The winged females which come from these pupæ are scarcely 0.06 in length, and to the tips of their wings 0.10. They are black, the abdomen dull lurid green, with black punctures and dots along each side, and three black bands at the tip, and opposite these on the under side a transverse black spot. The nectaries, legs and antennæ are similar to those of the wingless female.

AFFECTING THE STORED GRAIN AND MEAL.

In stale Indian meal and emptying-cakes made thereof; a soft white worm half an inch long, with a brownish yellow head and polished yellowish white spot above on the neck, and on the last segment.

The Indian meal moth, *Tinea Zex*, new species (Plate 4, fig. 1).

Our housewives are sometimes vexed with finding their store of emptying cakes, which are used for exciting fermentation in dough, invaded and spoiled by worms. If the bag or box in which these cakes are kept happens at any time to be left open, the winged moths from which these worms proceed are liable to find their way into it, and scatter their eggs through the cakes, so that the whole of them are at a subsequent day discovered to be infested with worms. As Indian meal is the chief ingredient in these cakes, I infer that to be the favorite food of this insect, and that it might therefore exclaim, with the enraptured Barlow in his Hasty-pudding,

"All my bones were made of Indian corn—
Delicious grain!"

More particularly where the meal of maize has been long kept and has become stale, I suspect this insect will be apt to infest it. But it is only in the situation first spoken of that I have as yet met with it.

The worms appear to have the same habits with the larva of the grain moth or the wolf, *Tinea granella*. They form cylindrical burrows through the substance on which they feed, lining the
sides of this passage with fine threads like cobweb. They crawl over a smooth surface with facility but not rapidly, and when annoyed they wriggle slightly and walk backwards. They grow to the length of half an inch, and are of a cylindrical form, slightly broadest in the middle. They are dull white, soft and flesh-like, the sutures between the segments but slightly marked and not constricted. Their heads are of a hard horn-like consistence, shining, brownish-yellow. The second segment or neck on its upper side is also horny, shining, yellowish-white; and on the top of the last segment is a spot similar to this. They are sixteen-footed, the prolegs being short, and their minute hooks form a brown ring around their soles. The surface shows a few scattering hairs, which on the sides arise from very faint smooth wart-like dots.

The pupa or chrysalis is 0.30 long, pale yellow or yellowish white, its sutures marked by fine slender chestnut brown lines, and the eyes prominent, rather large and black. It lies within a slight cocoon which is attached to the side of the bag within which the larva has been reared. The cocoon is formed of fine snow-white silken threads, appearing like a coating of mildew, through which the chrysalis is very visible.

The winged moth moves with frequent skips as it is walking along. It crawls out of its lurking place, till it sees its way clear from any obstruction, when it spreads its wings and flies away, hovering about the shady corners of the room and sustaining itself some time upon the wing without alighting. It is destitute of any marks or spots by which to distinguish it, being merely of a dull gray or blackish color with the basal third of the fore wings whitish. It pertains to the Family Tineidae of the Order Lepidoptera, and appears to coincide more closely with the genus Tinea than any other which has been characterized by systematic writers, although in the greater length of its spiral tongue and of its body it does not fully agree with the typical species of this genus.

The Indian-meal moth, Tinea Zece, (plate 4, fig. 1) is about 0.35 in length to the tip of its abdomen and closed wings, and when the latter are spread it is from half an inch to 0.60 in width. It has a slightly greasy appearance, and its fore wings are obscure gray or blackish, their basal third dull white or cream
colored, appearing as though denuded of their scales. Commonly a dull tawny yellow spot beyond the centre of the wing is more or less distinct, and sometimes there is a band of the same color on the hind margin, which is broader towards the outer edge. Their tips are rounded and the hind margin is cut off obliquely and feebly rounded. The hind wings are white and slightly glossy, with a pale leaden blue reflection, their hind edge and tips pale brown. They have a long silky whitish fringe, which is longer on the inner margin, and shows a more pure white band on its base. The body is of the same blackish gray color with the fore wings, often varied with tawny yellow or reddish upon the neck and the hind part of the thorax. Beneath it is of the same color as above, the wings being pale leaden, the lustre of satin, the hind pair paler. The shanks of the hind pair of legs are thickened and robust. The antennae are without any hairiness; they taper slightly, and are about two-thirds the length of the body. The feelers are longer than the head and are held horizontally forward, forming, in connection with a small tuft of hairs projecting forward from the face between their upper edges, a conical beak. Their apical joint is distinctly exposed, small, twice as long as broad, and is oval or slightly thicker towards its base. The spiral tongue is long, and when alive the abdomen extends to the tips of the closed wings.
3. THE HOP.

AFFECTING THE LEAVES.

Eating numerous holes of various sizes in the leaf, often consuming nearly all the leaves except their veins; a small pale green worm with whitish stripes and black dots placed symmetrically.

The Hop-vine Snout-moth, Hypena Humuli, Harris, H. rostralis Linnæus, (plate 1, fig. 1.)

Although throughout our country generally, no attention is given to the cultivation of the hop, it is a staple product of a few of the central counties of our own State, and at times a most lucrative crop, yielding its growers munificent returns. Nearly three-fourths of all the hops produced in the United States are raised in the State of New-York, the single county of Otsego, according to the census of 1850, yielding over a million of pounds, and the adjoining counties of Madison, Oneida, and Herkimer each much surpassing any other districts of similar extent in any part of our country.

In England, where the hop has been extensively cultivated for a long time, it is well known that it is liable to be severely depredated upon at times, by insects; insomuch that the revenue which the government derives from this source is extremely fluctuating, frequently varying to the amount of half a million of dollars per annum. And Kirby and Spence, alluding to this subject, say: "The hop-grower is wholly at the mercy of insects. They are the barometer that indicates the rise and fall of his wealth." In our own country this crop appears to be similarly exposed to injury from this class of beings, that it is abroad. The larvae of the insect which we have named above, is with us the most universal and formidable of these depredators, making their appearance suddenly, and in a few days sometimes, and before their presence is noticed, completely riddling and destroying the leaves of whole fields.

These worms begin to appear upon the leaves as early as the fore part of June, and by the middle of that month they will be found of all sizes. The vines are now rapidly climbing the poles, and the older leaves, near the ground, where the dense foliage enables the worms to secret themselves more securely, are those
on which they first feed, perforating them with round holes between the veins. The leaves are also sprinkled over with black grains, the excrement of the worms. When not engaged in feeding they repose upon the under surface of the leaves or upon the leaf stalks, stretched out straight and more slender than at other times, showing three or four fine transverse impressed lines at each of the sutures. When crawling it arches its back upwards, like a span worm. Dr. Harris is in error in saying that it does not suspend itself by a thread. On carefully looking at an infested vine, some specimens will almost always be noticed hanging down from the leaves. Their attachment however is very slight, and on the slightest agitation of the leaf the worm lets go its hold and drops to the ground, wriggling briskly for a short time after touching the surface. They continue upon the leaves until the middle of August or later, new broods appearing as the old ones vanish. The hops growing upon vines thus stripped of their leaves are small and but few in number.

The larva when young are not thicker than a pin and are broadest at the head and gradually taper from thence to the tip; they are watery white, more or less clouded with grass green in the middle from inclosed alimentary matter. When larger they become of a cylindrical form, strongly constricted at the sutures, and are pale green above, commonly showing a deeper green stripe along the middle of the back; head and under side greenish white; a white or pale greenish stripe along each side of the back, and sometimes a slender whitish line along the middle of each side; four black dots above, on each segment, at the angles of an imaginary square; five dots upon each side, the upper one above and the next one in the lower edge of the slender lateral whitish stripe; each of these dots yielding a hair; head with several black dots symmetrically arranged, and on the three next segments the dots are placed in transverse rows; mouth yellowish, with the tips of the jaws black. The legs are but fourteen in number, the prolegs being placed on the 8th, 9th and 10th of the thirteen segments.

The worms attain their full size in about a fortnight after they hatch from the eggs, and are then an inch or more in length, when stretched out in repose. Some of them enter the loose dirt slightly, to change to pupæ, others crawl between or beneath lumps of dirt, and others merely secrete themselves under or partly under leaves lying on the surface of the ground. They do not enclose themselves in cocoons, but assume the pupa form by throwing off their larva skin. The pupa is half an inch long and is at first of a grass green color on its back and greenish-white beneath, with a tawny band on the middle of each seg-
The moths which come from these worms belong to the Family Pyralide of the Order Lepidoptera, and to the genus Hypena, which is characterised by the length and form of its feelers, one of which, highly magnified, is represented, plate 1, fig. 1 b. They are quite long, and project horizontally forwards in front of the head, resembling, when pressed together as they usually are, a beak or proboscis, from which circumstance the species of this genus have derived their common name, snout-moths. These moths are extremely variable, being sometimes much darker colored, and the markings and scales upon their wings are peculiarly liable to be more or less obliterated from frequent contact with the rough scabrous leaves of the hop. This renders it difficult to determine whether the hop-vine snout-moths of this country are a distinct species from those of Europe, which are similarly variable. Dr. Harris has treated of our insect " upon the supposition that it is distinct," though he alludes to no marks which indicate it to be different; and the full descriptions of the European moth given by writers coincide quite accurately with our insect. Mr. Westwood notices the singular fact that some of these moths come from their chrysalids in winter, about the period of Christmas, and that all these individuals are the most dark colored and sooty, with their marks the most obscured of any belonging to their race. And on last Christmas eve captured a moth flying about my room which was found to be one of these black obscure individuals of this species. From whence it could have come at that inclement period of the year was a mystery. Thus all the circumstances indicate that this is a species which has been introduced upon this side of the Atlantic among hop plants brought here from Europe. But until I am able to verify this fact more fully, by comparing our insect with European specimens, I refrain from making any alteration in the record as it now stands.

The hop-vine snout-moth of hop-vine Hypena (plate 1, fig. 1), measures about an inch and a quarter across its wings when extended. It is very variable. The most perfect specimens are of a dull brown color with a black stripe on the middle of the thorax; fore wings with a large rhombic darker spot on the middle
of their outer margin, with two elevated coal black dots near its inner anterior and
two others near its inner posterior angle; this spot sometimes extends to the base
of the wing, and is commonly margined behind by a pale gray oblique spot or
streak, in which is sometimes an angular brown line, like the letter V when most
distinct; often a row of black dots posteriorly, parallel with the hind margin, as
shown in the figure; hind legs black; fringe blackish brown; surface with scattered
elevated black points. Hind wings pale dusky brown, edged posteriorly with a
darker brown line, the fringe paler.

When the worms commence their depredations on the leaves, in June, the winged moths which are then found among the leaves, and which there can scarcely be a doubt are the parents of the worms, are of an ash gray or dull white color, so much paler than those which hatch from the worms later in the sea-
son that they would not be regarded as belonging to the same species. They at this time appear much like the species de-
scribed by British writers, supposed by Mr. Stephens to be the
Hypena obesalis of Treitschke. This came to be regarded as a
British insect, from a single specimen which was found in the
celebrated collection of Mr. Francheillon. But as no other speci-
men has ever been met with in England, Mr. Stephens finally
rejected it from the British list, and supposes that the specimen
which had misled him was probably a native of Bavaria, where
Treitschke met with the species which he describes. But as it
is now known that many North American insects were carelessly
placed with the British specimens in Mr. Francheillon’s collection,
it is quite probable that this Hypena was also from this country,
and is merely one of these pale vernal varieties of the hop-vine
snout-moth which occur upon this side of the Atlantic. Except
in being so much lighter colored and having their marks more
pale and indefinite, they correspond with the description above
given, but show in addition an oblique dusky streak upon the
tip of the wing, running towards the disk, this streak being
caused by a slight plait or groove in the wing, in which groove
the scales are less effaced.

Several of the species of Hypena are marked like the present,
with little elevated tufts of scales jutting abruptly out from the
surface of the fore wings. In other species no such tufts appear.
We have a rather pretty example of this last kind of snout-moths,
in an insect which may be met with in our forests about
the middle of June, and which I name.
The elegant Hypena, *H. elegantalis* (plate 1, fig. 2). It is an inch in width across the expanded wings, and of a bluish gray color, sprinkled with innumerable tawny atoms. Across the middle of its fore wings is a broad wavy tawny yellow band, edged posteriorly with a black line. This band is widened in its middle, where it incloses a large cream white spot having a black dot on its inner part. Forward of this, towards the base, is a narrow wavy tawny yellow band. On the apical part of the wing is a large pale tawny cloud, around a gray patch upon the apex. On the hind margin is a narrow tawny band, edged on each side by a black line, the inner line regularly undulated. The fringe is white with black alternations. The hind wings have a black central dot in a broad whitish band which is edged on each side with tawny brown lines, and behind this is an irregular tawny yellow band. The hind margin is marked the same as that of the fore wings, and the outer or anterior margin is white.

Syringing or showering hop vines with strong soap suds or with a solution of oil-soap in the proportion of two pounds of the soap to about fifteen gallons of water is the only remedy which I have seen mentioned for ridding them of the Hypena worms.

[Supplementary note to page 220. The dry leaf, forming a wheel or whirligig on the ends of the twigs of the button-wood or sycamore in the winter season, noticed as being perhaps drawn into this position by plant-lice or some other insect, I since find to be the natural leafy bract or stipule of the twig, which upon withering in autumn separates and surrounds the twig, forming the revolving wheel or collar alluded to. It is certainly quite a curiosity, which I do not observe noticed in any of our botanical works.]
INDEX.

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acerifoliella, Ornix</td>
</tr>
<tr>
<td>Acinia Novaeboracensis</td>
</tr>
<tr>
<td>Solidaginis</td>
</tr>
<tr>
<td>Ægeria exotiosa</td>
</tr>
<tr>
<td>Agrillus Fagi</td>
</tr>
<tr>
<td>Agromyza Tritici</td>
</tr>
<tr>
<td>Agromyza, Diapria</td>
</tr>
<tr>
<td>Agrotis degener</td>
</tr>
<tr>
<td>subgothica</td>
</tr>
<tr>
<td>albicorns, Chlorops</td>
</tr>
<tr>
<td>albosigna, Clostera</td>
</tr>
<tr>
<td>Aleurodes</td>
</tr>
<tr>
<td>Aleuronia, new genus</td>
</tr>
<tr>
<td>Westwoodii</td>
</tr>
<tr>
<td>Alternated lace-wing</td>
</tr>
<tr>
<td>alternatus, Hemerobius</td>
</tr>
<tr>
<td>Alucitkae</td>
</tr>
<tr>
<td>American Clostera</td>
</tr>
<tr>
<td>lackey moth</td>
</tr>
<tr>
<td>Meromyza</td>
</tr>
<tr>
<td>vapor moth</td>
</tr>
<tr>
<td>Americana, Clostera</td>
</tr>
<tr>
<td>Gastropacha</td>
</tr>
<tr>
<td>Americanus, Ixodes</td>
</tr>
<tr>
<td>Pemphigus</td>
</tr>
<tr>
<td>amiculus, Hemerobius</td>
</tr>
<tr>
<td>anachoretta, Clostera</td>
</tr>
<tr>
<td>anastomosis, Clostera</td>
</tr>
<tr>
<td>Anatis 15-punctata</td>
</tr>
<tr>
<td>angustata, Maecroactylus</td>
</tr>
<tr>
<td>Ant, carpenter</td>
</tr>
<tr>
<td>cherry</td>
</tr>
<tr>
<td>little yellow</td>
</tr>
<tr>
<td>New-York</td>
</tr>
<tr>
<td>Pennsylavia</td>
</tr>
<tr>
<td>silky</td>
</tr>
<tr>
<td>troublesome</td>
</tr>
<tr>
<td>walnut</td>
</tr>
<tr>
<td>wood-eating</td>
</tr>
<tr>
<td>antennalis, Chlorops</td>
</tr>
<tr>
<td>Anthocoris pseudo-chinche</td>
</tr>
<tr>
<td>Ants, larva of</td>
</tr>
<tr>
<td>with plant-lice</td>
</tr>
<tr>
<td>Aphanus, genus</td>
</tr>
<tr>
<td>Aphidius genus</td>
</tr>
<tr>
<td>cherry</td>
</tr>
<tr>
<td>cranberry</td>
</tr>
<tr>
<td>knot-wood</td>
</tr>
<tr>
<td>Lactucaaphis</td>
</tr>
<tr>
<td>lettuce</td>
</tr>
<tr>
<td>Polygonaphis</td>
</tr>
<tr>
<td>poplar</td>
</tr>
<tr>
<td>willow</td>
</tr>
<tr>
<td>Aphis genus</td>
</tr>
<tr>
<td>bursarius</td>
</tr>
<tr>
<td>Carye</td>
</tr>
<tr>
<td>Caryella</td>
</tr>
<tr>
<td>Cerasi</td>
</tr>
<tr>
<td>Cerasicolens</td>
</tr>
<tr>
<td>Cerasiophila</td>
</tr>
<tr>
<td>cherry</td>
</tr>
<tr>
<td>cherry-inhabiting</td>
</tr>
<tr>
<td>cherry-leaf</td>
</tr>
<tr>
<td>fumipennis</td>
</tr>
<tr>
<td>Hickory-gall</td>
</tr>
<tr>
<td>Little black-margined</td>
</tr>
<tr>
<td>dotted-winged</td>
</tr>
<tr>
<td>hickory</td>
</tr>
<tr>
<td>smoky-winged</td>
</tr>
<tr>
<td>spotted-winged</td>
</tr>
<tr>
<td>maculilla</td>
</tr>
<tr>
<td>Maidis</td>
</tr>
<tr>
<td>Mali</td>
</tr>
<tr>
<td>Malifolies</td>
</tr>
<tr>
<td>marginella</td>
</tr>
<tr>
<td>Pruni</td>
</tr>
<tr>
<td>Prunifolius</td>
</tr>
<tr>
<td>punctatella</td>
</tr>
<tr>
<td>Index</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Aphis Tiliae</td>
</tr>
<tr>
<td>" Ulmi</td>
</tr>
<tr>
<td>" woolly</td>
</tr>
<tr>
<td>" Zee</td>
</tr>
<tr>
<td>Apple bark-louse</td>
</tr>
<tr>
<td>" leaf-louse</td>
</tr>
<tr>
<td>" " worm</td>
</tr>
<tr>
<td>" midge</td>
</tr>
<tr>
<td>" plant-louse</td>
</tr>
<tr>
<td>" shoulder-striped Tortrix</td>
</tr>
<tr>
<td>" thrips</td>
</tr>
<tr>
<td>" tree blight</td>
</tr>
<tr>
<td>" " borer</td>
</tr>
<tr>
<td>" " caterpillar</td>
</tr>
<tr>
<td>" " lady-bird</td>
</tr>
<tr>
<td>" " worm</td>
</tr>
<tr>
<td>" root blight</td>
</tr>
<tr>
<td>" " worm</td>
</tr>
<tr>
<td>arborum linearis, Cecacus</td>
</tr>
<tr>
<td>Arctia Isabella</td>
</tr>
<tr>
<td>Argas chinche</td>
</tr>
<tr>
<td>Armadillo</td>
</tr>
<tr>
<td>Ashy plume</td>
</tr>
<tr>
<td>Aspilothius Pinifolii</td>
</tr>
<tr>
<td>Asteris, Tephritis</td>
</tr>
<tr>
<td>Asters, galls on</td>
</tr>
<tr>
<td>Aspidiotus conchiformis</td>
</tr>
<tr>
<td>" Juglandis</td>
</tr>
<tr>
<td>" Rose</td>
</tr>
<tr>
<td>aurata, Cetonia</td>
</tr>
<tr>
<td>Bark-louse, apple</td>
</tr>
<tr>
<td>" butternut</td>
</tr>
<tr>
<td>" currant</td>
</tr>
<tr>
<td>" ozier</td>
</tr>
<tr>
<td>" pear</td>
</tr>
<tr>
<td>" rose</td>
</tr>
<tr>
<td>Barley flies</td>
</tr>
<tr>
<td>Bed bug</td>
</tr>
<tr>
<td>Beetle tick</td>
</tr>
<tr>
<td>Belly-spotted moth</td>
</tr>
<tr>
<td>bipunctata, Chrysopa</td>
</tr>
<tr>
<td>bipustulatus, Chilocorus</td>
</tr>
<tr>
<td>bivulnarus</td>
</tr>
<tr>
<td>Black-headed palmer-worm</td>
</tr>
<tr>
<td>Black-headed cat-worm</td>
</tr>
<tr>
<td>" -margined aphis</td>
</tr>
<tr>
<td>" -veined Microps</td>
</tr>
<tr>
<td>Blight, apple root</td>
</tr>
<tr>
<td>" apple tree</td>
</tr>
<tr>
<td>" pine</td>
</tr>
<tr>
<td>Blue wasp</td>
</tr>
<tr>
<td>Bordered cicada</td>
</tr>
<tr>
<td>borealis, Orvyia</td>
</tr>
<tr>
<td>Borer, apple tree</td>
</tr>
<tr>
<td>" hickory</td>
</tr>
<tr>
<td>" oak</td>
</tr>
<tr>
<td>" peach tree</td>
</tr>
<tr>
<td>Brachytheia Malana</td>
</tr>
<tr>
<td>" tripunctata</td>
</tr>
<tr>
<td>Brassicella, Cerostoma</td>
</tr>
<tr>
<td>brevicornis, Sphyracephalus</td>
</tr>
<tr>
<td>Brown-bordered plume</td>
</tr>
<tr>
<td>Buprestis, apple</td>
</tr>
<tr>
<td>bursarius, Pemphigus</td>
</tr>
<tr>
<td>Butternut bark-louse</td>
</tr>
<tr>
<td>Byrsocrita genus</td>
</tr>
<tr>
<td>Cabbage moth</td>
</tr>
<tr>
<td>Cacti, Chilocorus</td>
</tr>
<tr>
<td>Canadian Tetanocera</td>
</tr>
<tr>
<td>candida, Saperda</td>
</tr>
<tr>
<td>canicularis, Cicada</td>
</tr>
<tr>
<td>Canker worm</td>
</tr>
<tr>
<td>Carpenter ants</td>
</tr>
<tr>
<td>Carposca Ponomella</td>
</tr>
<tr>
<td>Caryae, Aphis</td>
</tr>
<tr>
<td>" Formica</td>
</tr>
<tr>
<td>" Lophocampa</td>
</tr>
<tr>
<td>Caryaeacalis, Pemphigus</td>
</tr>
<tr>
<td>Caryella, Aphis</td>
</tr>
<tr>
<td>Castanea, Hemerobius</td>
</tr>
<tr>
<td>castrensis, Clioseampa</td>
</tr>
<tr>
<td>Caterpillar, apple tree</td>
</tr>
<tr>
<td>" forest</td>
</tr>
<tr>
<td>Cecidomyia</td>
</tr>
<tr>
<td>" Grossulariae</td>
</tr>
<tr>
<td>Centipede</td>
</tr>
<tr>
<td>Cerambyx, tiger</td>
</tr>
<tr>
<td>" woolly</td>
</tr>
<tr>
<td>Cerasaphis, Trioxys</td>
</tr>
<tr>
<td>Cerasi, Aphis</td>
</tr>
<tr>
<td>" Myrmica</td>
</tr>
<tr>
<td>cerealiwm, Thrips</td>
</tr>
<tr>
<td>Cerostoma genus</td>
</tr>
<tr>
<td>" Brassicella</td>
</tr>
<tr>
<td>Cetonia aurata</td>
</tr>
<tr>
<td>Chelocompscontubernallellius</td>
</tr>
<tr>
<td>" Malibolellius</td>
</tr>
<tr>
<td>" pometellus</td>
</tr>
<tr>
<td>" trimaculellus</td>
</tr>
<tr>
<td>" ventrillus</td>
</tr>
<tr>
<td>Chalcide,</td>
</tr>
<tr>
<td>Chalky plume</td>
</tr>
<tr>
<td>Cheater, larch</td>
</tr>
<tr>
<td>Cheater's parasite</td>
</tr>
</tbody>
</table>
INDEX.

Cherry, Aphidius	138
Cherry-inhabiting aphids	131
Cherry-leaf aphids	131
Cherry-tree louse	125, 126, 204
Chestnut lace-wing	94
Chi, Chrysopa	87
Chilocus stigma	259
Chinch bug	277
Chinch, false	255
Chinch, species of	84, 92
Cicada Robertsonii	39
Cicada septendecim	38
Cicada superba	39
Cinex lectularius	291
Cineridactylus, Pterophorus	114
Clandestine Owlet moth	315
Clean golden-eye	88
Cleonymus Cleonymus	200
Cleonymus Clisiocampae	200
Clisiocampae Americana	181
Clisiocampae, Cleonymus	190
Cisterna albosigna	278
Cloudy plume	143
Coccinella bark-louse	259
Coccinella, Mall	99
Coccinellidae	98
Coccophagus	107
Coccus arborum-linearis	31, 34
Pineocicris	167
Pyri	105
Pyrus Malus	33
Codling moth	252
Carulcine, Peloquen	62
Coleophoratorum, Galamus	153
Collethrips trifasciata	308
Colon golden-eye	88
Common Chlorops	300
Common midge	255
Conone moth	252
Conchiformis, Aspidiotus	31, 34
Confluent Porcellio	119
Conlopheryx Sineformis	96

Page. 331
Page.

Conjunctus, Hemerobius | 94 |
Conotrachelus elegans | 156 |
" " larva | 158 |
" " Nemaphus | 156 |
Consumptive golden-eye | 92 |
Contubernellus, Chorotichthys | 233 |
Counterfeit golden-eye | 89 |
Coxendix, Oschinesis | 301 |
Cranberry Aphidius | 137 |
Crasseformis, Oschinesis | 301 |
Cretidactylus, Pterophorus | 145 |
Crevice Cicada | 39 |
Crustacea class | 117 |
Currant bark-louse | 34 |
curtula, Clestera | 274 |
Cut-worms | 310 |
Dart moths | 314 |
Decieving spider | 219 |
" " wheat-fly | 301 |
delicatulus, Hemerobius | 96 |
dentipes, Chrysobothris | 29 |
Destructive Egeria | 110 |
destinator, Agrotis | 319 |
Rhyparochromus | 293 |
Diapria Agromyza | 303 |
Diaspis linearis | 31, 34 |
dimidiata, Xylocoris | 295 |
Diopsis brevicornis | 69 |
" " thoracica | 69 |
Disagreeable golden-eye | 84 |
displicata, Epeira | 219 |
Dog-day cicada | 39 |
domesticus, Xylocoris | 295 |
dorsalis, Porcellio | 121 |
Dotted-horned golden-eye | 92 |
" " -winged aphid | 165 |
" " Tetanocera | 68 |
Dragon-flies | 48 |
Eggs of insects | 73, 85 |
" " spiders | 76 |
elegans, Conotrachelus | 156 |
Elegant Hypena | 327 |
Elegant weevils | 150, 156 |
elongata, Macroductylus | 249 |
enuncta, Chrysopa | 88 |
Epeira decipiens | 219 |
" " displicata | 219 |
Eriosa lanigera | 7, 50 |
" " Mal | 7 |
" " on hickory | 166 |
Emetopona, new genus | 241 |
" " ministra | 235 |
exitiosa, Egeria | 108 |
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fagi, Agrilus</td>
<td>72</td>
</tr>
<tr>
<td>falcens, Microps</td>
<td>294</td>
</tr>
<tr>
<td>False chinch bug</td>
<td>295</td>
</tr>
<tr>
<td>Feather-horned Chlorops</td>
<td>300</td>
</tr>
<tr>
<td>femorata, Chrysobothris</td>
<td>25</td>
</tr>
<tr>
<td>femoratus, Molobrus</td>
<td>255</td>
</tr>
<tr>
<td>Fickle midge</td>
<td>255</td>
</tr>
<tr>
<td>Fifteen-spotted lady-bird</td>
<td>99</td>
</tr>
<tr>
<td>filicornis, Chrysopa</td>
<td>91</td>
</tr>
<tr>
<td>filosus, Chrysopa</td>
<td>91</td>
</tr>
<tr>
<td>fissipennes</td>
<td>141</td>
</tr>
<tr>
<td>Flies, golden-eyed</td>
<td>82, 92</td>
</tr>
<tr>
<td>" Ichneumon</td>
<td>134</td>
</tr>
<tr>
<td>" lace-winged</td>
<td>92, 96</td>
</tr>
<tr>
<td>" mealy-winged</td>
<td>96</td>
</tr>
<tr>
<td>" Syrphus</td>
<td>100</td>
</tr>
<tr>
<td>" wheat</td>
<td>297</td>
</tr>
<tr>
<td>Fly, golden-rod</td>
<td>66</td>
</tr>
<tr>
<td>" honey-dew</td>
<td>65</td>
</tr>
<tr>
<td>" wheat mow</td>
<td>302</td>
</tr>
<tr>
<td>Forest caterpillar</td>
<td>198</td>
</tr>
<tr>
<td>Formica Caryce</td>
<td>151</td>
</tr>
<tr>
<td>" herculeana</td>
<td>61</td>
</tr>
<tr>
<td>" ligniperda</td>
<td>61, 152</td>
</tr>
<tr>
<td>" Novaboracensis</td>
<td>62</td>
</tr>
<tr>
<td>" Pennsylvanica</td>
<td>152</td>
</tr>
<tr>
<td>" subsericca</td>
<td>154</td>
</tr>
<tr>
<td>Formicæ, Uropoda</td>
<td>152</td>
</tr>
<tr>
<td>fraterna, Trichogramma</td>
<td>217</td>
</tr>
<tr>
<td>Freckled lace-wing</td>
<td>92</td>
</tr>
<tr>
<td>" plume</td>
<td>145</td>
</tr>
<tr>
<td>Frit, Chlorops</td>
<td>297</td>
</tr>
<tr>
<td>Frosted cleric</td>
<td>39</td>
</tr>
<tr>
<td>fuliginosus, Molobrus</td>
<td>255</td>
</tr>
<tr>
<td>fulvibucca, Chrysopa</td>
<td>86</td>
</tr>
<tr>
<td>fumipennella, Aphis</td>
<td>166</td>
</tr>
<tr>
<td>Galls on asters</td>
<td>66</td>
</tr>
<tr>
<td>" golden-rold</td>
<td>66, 67</td>
</tr>
<tr>
<td>" grape leaves</td>
<td>158</td>
</tr>
<tr>
<td>" hickory twigs</td>
<td>155</td>
</tr>
<tr>
<td>" poplars</td>
<td>158</td>
</tr>
<tr>
<td>Gamasus coleoptratorum</td>
<td>153</td>
</tr>
<tr>
<td>Gartered plume</td>
<td>139</td>
</tr>
<tr>
<td>Gastropacha Americana</td>
<td>267</td>
</tr>
<tr>
<td>Geometridae</td>
<td>74</td>
</tr>
<tr>
<td>glaber, Porcello</td>
<td>119</td>
</tr>
<tr>
<td>Glassy lace-wing</td>
<td>95</td>
</tr>
<tr>
<td>Golden-eye, Signoret's</td>
<td>82</td>
</tr>
<tr>
<td>" species of</td>
<td>84, 92</td>
</tr>
<tr>
<td>Golden-rold fly</td>
<td>66</td>
</tr>
<tr>
<td>" galls</td>
<td>69, 67</td>
</tr>
<tr>
<td>Gooseberry midge</td>
<td>176</td>
</tr>
<tr>
<td>Gothic Dart moth</td>
<td>314</td>
</tr>
<tr>
<td>Grain Thrips</td>
<td>305</td>
</tr>
<tr>
<td>" moth</td>
<td>320</td>
</tr>
<tr>
<td>Grape leaf galls</td>
<td>158</td>
</tr>
<tr>
<td>" " louse</td>
<td>158</td>
</tr>
<tr>
<td>" " vine plague</td>
<td>139</td>
</tr>
<tr>
<td>Graphiphora clandestina</td>
<td>315</td>
</tr>
<tr>
<td>Grossulariae, Cecidomyia</td>
<td>176</td>
</tr>
<tr>
<td>guttularis, Tetanocera</td>
<td>68</td>
</tr>
<tr>
<td>Hadena amica</td>
<td>316</td>
</tr>
<tr>
<td>Handmaid moth</td>
<td>235</td>
</tr>
<tr>
<td>Harris's golden-eye</td>
<td>90</td>
</tr>
<tr>
<td>Hemerobidae</td>
<td>70</td>
</tr>
<tr>
<td>Hemerobius, species of</td>
<td>92-96</td>
</tr>
<tr>
<td>herculeana, Formica</td>
<td>61</td>
</tr>
<tr>
<td>Hickory aphis</td>
<td>163</td>
</tr>
<tr>
<td>" borer</td>
<td>146</td>
</tr>
<tr>
<td>" gall aphis</td>
<td>155</td>
</tr>
<tr>
<td>" tussock moth</td>
<td>159</td>
</tr>
<tr>
<td>Hog-lice</td>
<td>117</td>
</tr>
<tr>
<td>Honey-dew</td>
<td>50</td>
</tr>
<tr>
<td>" fly</td>
<td>65</td>
</tr>
<tr>
<td>Hop-vine Snout-moth</td>
<td>323</td>
</tr>
<tr>
<td>Hornet</td>
<td>62</td>
</tr>
<tr>
<td>hyalinatus, Hemerobius</td>
<td>95</td>
</tr>
<tr>
<td>Hylemyia deceptiva</td>
<td>301</td>
</tr>
<tr>
<td>" similis</td>
<td>301</td>
</tr>
<tr>
<td>Hypena Humuli</td>
<td>323</td>
</tr>
<tr>
<td>" elegantalis</td>
<td>327</td>
</tr>
<tr>
<td>Ichneumon-flies</td>
<td>134</td>
</tr>
<tr>
<td>illepida, Gastropacha</td>
<td>267</td>
</tr>
<tr>
<td>ilmæa, Chrysopa</td>
<td>84</td>
</tr>
<tr>
<td>immaculatus, Porcello</td>
<td>120</td>
</tr>
<tr>
<td>inch-worms</td>
<td>74</td>
</tr>
<tr>
<td>Indian meal moth</td>
<td>320</td>
</tr>
<tr>
<td>inconstans, Molobrus</td>
<td>255</td>
</tr>
<tr>
<td>Insects, distinctive marks</td>
<td>117</td>
</tr>
<tr>
<td>intermediary, Orgyia</td>
<td>213</td>
</tr>
<tr>
<td>irroration, Hemerobius</td>
<td>92</td>
</tr>
<tr>
<td>Isabella tiger moth</td>
<td>173</td>
</tr>
<tr>
<td>Isopoda order</td>
<td>118</td>
</tr>
<tr>
<td>lxodes Americanus</td>
<td>117</td>
</tr>
<tr>
<td>Jaws of Aphis-lions</td>
<td>77</td>
</tr>
<tr>
<td>Juglandis, Aspidiotus</td>
<td>35</td>
</tr>
<tr>
<td>Julus</td>
<td>117</td>
</tr>
<tr>
<td>Knot-weed Aphiidus</td>
<td>186</td>
</tr>
<tr>
<td>Lace-winged flies</td>
<td>92-96</td>
</tr>
<tr>
<td>Lachnosterna querine</td>
<td>218</td>
</tr>
<tr>
<td>Lackey-moth, American</td>
<td>181</td>
</tr>
<tr>
<td>" Cleonymus</td>
<td>200</td>
</tr>
<tr>
<td>Lactucaphilis, Aphiidus</td>
<td>136</td>
</tr>
<tr>
<td>Lady-bird bark-louse</td>
<td>259</td>
</tr>
</tbody>
</table>
INDEX.

Lady-bird 15-spotted, 99
langera, Eriosoma, 7, 50
Lappet-moth, larch, 262
Larch-cheater, 262
Larics, Planosa, 262
Larva of ants, 153
“ lady-birds, 98
“ Monohammus, 149
“ Syrphus, 100, 158
“ weevils, 158
Lateral-spotted Porcellio, 128
“-striped Porcellio, 121
Lateralis, Porcellio, 121
Leaf-cutter, maple, 269
Leaf-louse, apple, 56
“ grape, 168
“ plum, 122
Lecanium Pyri, 105
lectularius, Clivex, 291
Lettered Tephritis, 66
Lettuce-louse Aphidius, 136
leucopterus, Micropus, 277
lencostigma, Orgyia, 209
Libellulae, 48
liguiperda, Formica, 61, 152
limatus, Porcellio, 120
limbalis, Porcellio, 121
linearis, Diaspis, 31, 34
lineaticornis, Chrysopa, 91
Lined cut-worm, 313
Little black-marginated aphis, 166
“ dotted-winged aphids, 165
“ friend lace-wing, 95
“ hickory aphids, 163
“ smoky-winged aphids, 166
“ snout-moth, 227
“ spotted-winged aphids, 166
“ yellow ant, 129
Lobe-winged plume, 143
lobidactylus, Pterophorus, 143
Locust, seventeen-year, 38
Lophocampa Caryae, 159
Louse, apple, 49, 54
“ apple bark, 31, 34
“ butternut bark, 25
“ cherry, 125
“ cherry-inhabiting, 131
“ cherry leaf, 131
“ currant bark, 34
“ grape leaf, 158
“ ozier bark, 34
“ pear bark, 32, 105
Louse, plum, 122
“ plum-leaf, 122
“ rosebark, 36
Lygaeus leucopterus, 292
Macrodactylus subspinosus, 245
maculata, Vespa, 62
maculella, Aphis, 106
Maize aphis, 318
Malana, Brachytenia, 241
Mali, Aphis, 49, 54
“ Cecinella, 99
“ Eriosoma, 7
“ Molobrus, 252
“ Philothrips, 102
Maliolae, Aphis, 56
Malificelius, Chactochilus, 231
Many-dotted apple worm, 241
Maple leaf-cutter, 269
marginata, Cicada, 39
Margined Porcellio, 121
marginella, Aphis, 106
marginidactylus, Pterophorus, 144
Marshallana, Agrotis, 314
May-beetle, 248
Mealy-winged flies, 96
Meleona, new genus, 82
“ Signoretii, 82
melliginis, Tephritis, 65
Meromyza Americana, 299
Micropus, genus, 293
“ black-veined, 294
“ falcus, 294
“ leucopterus, 277
Midge, 77
“ apple, 252
“ common, 255
“ fickle, 255
“ gooseberry, 175
“ smoky-winged, 255
Millipedes, 117
ministra, Eunetoponza, 288
minuta, Myrmica, 129
minutus, Antliocoris, 295
mixtus, Porcellio, 103
Mississippi golden-eye, 89
moesta, Myrmica, 129
Molobrus femoratus, 255
“ fuliginosus, 255
“ inconstans, 255
“ Mali, 252
“ vulgaris, 255
Monohammus tigrinus, 146, 150
<p>| Monohammus, tomentosus | 150 |
| Moth, cabbage | 170 |
| " Isabella tiger | 173 |
| Moths split-winged | 141 |
| Mow fly, wheat | 302 |
| multiguttatus, Porcellio | 121 |
| Myrmica Cerasi | 130 |
| " minuta | 129 |
| " molesta | 129 |
| Myzoxylus Mali | 7 |
| nffivosidactylus, Pterophorus | 145 |
| nebulsedactylus, Pterophorus | 145 |
| Nenuphar, Conotrachelus | 156 |
| Neustria, Glisiocampa, | 182 |
| New-York Acinia | 67 |
| " ant | 62, 130 |
| " golden-eye | 90 |
| nigrella, Anthocoris | 295 |
| Northern vaporor moth | 213 |
| O-marked golden-eye | 85 |
| Oak borer | 28 |
| ocesalis, Hypena | 326 |
| Obese Siphonella | 299 |
| occidentalis, Hemerobius | 95 |
| occellata, Coccinella | 99 |
| Omikron, Chrysopa | 85 |
| Oniscide | 119 |
| Orgyia leucostigma | 209 |
| " borealis | 213 |
| " intermedia | 213 |
| Orgyia, Trichogramma | 216 |
| Oenix Acerifoliella | 289 |
| Oesnus coxendix | 301 |
| " crassifemoris | 301 |
| " tibialis | 300 |
| Osier bark louse | 34 |
| Pachymerus, genus | 292 |
| Palmer worm | 221 |
| " black-headed | 232 |
| " courade | 233 |
| " tawny-striped | 231 |
| " triple spotted | 223 |
| Pamernus, genus | 292 |
| Parasites of apple borers | 26 |
| " bark lice | 36, 107 |
| " cabbage moth | 172 |
| " Isabella tiger moth | 173 |
| Parisiensis, Xylocoris | 295 |
| Peach tree borer | 108, 114 |
| Pear bark louse | 36, 105 |
| Pelopeus cornucensis | 62 |
| Pemphigus Americanus | 7 |
| Pemphigus bursarius | 158 |
| " Caryacaullis | 155 |
| " Pyri | 5 |
| " Vitifoliae | 158 |
| " on walnut leaves | 166 |
| Pennsylvanian ant | 152 |
| periscelidactylus, Pterophorus | 139 |
| Perla, Chrysopa | 91 |
| Phalaena ministra | 230 |
| Phleothrips Mali | 102 |
| " Statices | 306 |
| Phygadenon Planosae | 239 |
| Fine blight | 167 |
| Fine-bush lace wing | 85 |
| Fine-leaf scale-insect | 256 |
| Pinicertics, Coccus | 167 |
| Phidimmus, Hemerobius | 95 |
| Pinifolie, Aspidotus | 256 |
| plorobunda, Chrysopa | 88 |
| Planosa, new genus | 268 |
| " Lariceps | 262 |
| " Velleda | 267 |
| Planosae, Phygadenon | 269 |
| Plant-louse, apple | 49, 54 |
| " cherry | 125, 132, 204 |
| " cherry leaf | 131 |
| " plum | 122 |
| " plum leaf | 122 |
| Plum leaf louse | 122 |
| " louse | 122 |
| " root borer | 112 |
| " weevil | 156 |
| Plume moth, species | 141-145 |
| Polygonaphis, Praon | 135 |
| pomettellus, Chaeothilus | 221 |
| Pomonella, Carpocapsa | 252 |
| Poplar Aphidius | 137 |
| Populaphis, Trioxys | 137 |
| Porcellio genus | 118 |
| " species | 119-121 |
| porrectella, Cerostoma | 174 |
| Praon Polygonaphis | 135 |
| " Viburnaphis | 137 |
| Preserver lace-wing | 94 |
| Pretty Porcellio | 120 |
| prunina, Cicada | 39 |
| Pruni, Aphis | 122 |
| Prunifolie, Aphis | 122 |
| pseudo-chinche, Anthocoris | 295 |
| pseudographa, Chrysopa | 89 |
| Pterophorus periscelidactylus | 139 |
| " species | 143-145 |</p>
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>punctatella, Aphis,</td>
<td>165</td>
</tr>
<tr>
<td>puncticornis, Chrysopa,</td>
<td>92</td>
</tr>
<tr>
<td>Pygura, genus,</td>
<td>241</td>
</tr>
<tr>
<td>Pyri, Eriosoima,</td>
<td>5</td>
</tr>
<tr>
<td>" Lecanida,</td>
<td>105</td>
</tr>
<tr>
<td>" Pemphigus,</td>
<td>5</td>
</tr>
<tr>
<td>Pyrus Malus, Coccus,</td>
<td>33</td>
</tr>
<tr>
<td>quadridiastata, Tephritis,</td>
<td>65</td>
</tr>
<tr>
<td>quercina, Lachnosterna,</td>
<td>248</td>
</tr>
<tr>
<td>quindeclin-punctata, Cocchiella,</td>
<td>99</td>
</tr>
<tr>
<td>reclusa, Chlostera,</td>
<td>274</td>
</tr>
<tr>
<td>Red-headed cut-worm,</td>
<td>312</td>
</tr>
<tr>
<td>renipustulata, Chilocorus,</td>
<td>259</td>
</tr>
<tr>
<td>Rhinosia pometella,</td>
<td>226</td>
</tr>
<tr>
<td>Rhyparochromus, genus,</td>
<td>292</td>
</tr>
<tr>
<td>" devastator,</td>
<td>293</td>
</tr>
<tr>
<td>Ribesii, Cecidomyia,</td>
<td>176</td>
</tr>
<tr>
<td>rimosaria, Cicada,</td>
<td>39</td>
</tr>
<tr>
<td>Robertson’s cicada,</td>
<td>39</td>
</tr>
<tr>
<td>" golden eye,</td>
<td>88</td>
</tr>
<tr>
<td>Rose bark louse,</td>
<td>35</td>
</tr>
<tr>
<td>" bug,</td>
<td>245</td>
</tr>
<tr>
<td>" chaffer,</td>
<td>248</td>
</tr>
<tr>
<td>rostralis, Hypena,</td>
<td>323</td>
</tr>
<tr>
<td>Rough Porcellio,</td>
<td>121</td>
</tr>
<tr>
<td>Salicaphis, Trioxys,</td>
<td>137</td>
</tr>
<tr>
<td>saltatrix, Meromyza,</td>
<td>299</td>
</tr>
<tr>
<td>Saperda bivittata,</td>
<td>11</td>
</tr>
<tr>
<td>" candida,</td>
<td>19</td>
</tr>
<tr>
<td>Saratoga Tetanocera,</td>
<td>68</td>
</tr>
<tr>
<td>scaber, Porcellio,</td>
<td>121</td>
</tr>
<tr>
<td>Scale-insect, pine-leaf,</td>
<td>256</td>
</tr>
<tr>
<td>Sclizoneura genus,</td>
<td>7</td>
</tr>
<tr>
<td>Sciara femorata,</td>
<td>255</td>
</tr>
<tr>
<td>Selaters,</td>
<td>117</td>
</tr>
<tr>
<td>Scelopendra,</td>
<td>117</td>
</tr>
<tr>
<td>Seventeen-year Locust,</td>
<td>38</td>
</tr>
<tr>
<td>Shank-banded Oscinis,</td>
<td>300</td>
</tr>
<tr>
<td>Short-horned stem-eye,</td>
<td>69</td>
</tr>
<tr>
<td>Shoulder-striped Tortrix,</td>
<td>241</td>
</tr>
<tr>
<td>Siegel’s golden-eye,</td>
<td>89</td>
</tr>
<tr>
<td>Signoret’s golden-eye,</td>
<td>82</td>
</tr>
<tr>
<td>Silky ant,</td>
<td>154</td>
</tr>
<tr>
<td>Similar wheat fly,</td>
<td>301</td>
</tr>
<tr>
<td>similis, Hylemyia,</td>
<td>301</td>
</tr>
<tr>
<td>Siphonella obesa,</td>
<td>290</td>
</tr>
<tr>
<td>Slaters,</td>
<td>117</td>
</tr>
<tr>
<td>Slender-lobed plume,</td>
<td>144</td>
</tr>
<tr>
<td>Smoky-winged aphis,</td>
<td>166</td>
</tr>
<tr>
<td>" midge,</td>
<td>255</td>
</tr>
<tr>
<td>Smooth Porcellio,</td>
<td>119</td>
</tr>
<tr>
<td>Snapping-beetle, thick-legged,</td>
<td>25</td>
</tr>
<tr>
<td>Starkus,</td>
<td>29</td>
</tr>
<tr>
<td>Snout-moth, hop-vine,</td>
<td>323</td>
</tr>
<tr>
<td>Snout-moth, little,</td>
<td>227</td>
</tr>
<tr>
<td>Solidagus, Achina,</td>
<td>65</td>
</tr>
<tr>
<td>Solidago, galls,</td>
<td>65, 77</td>
</tr>
<tr>
<td>Sow-bugs,</td>
<td>117</td>
</tr>
<tr>
<td>Sphyracephala brevicornis,</td>
<td>69</td>
</tr>
<tr>
<td>" sub-bifasciata,</td>
<td>70</td>
</tr>
<tr>
<td>Spider, deceiving,</td>
<td>210</td>
</tr>
<tr>
<td>Spiders,</td>
<td>63, 74</td>
</tr>
<tr>
<td>" eggs,</td>
<td>76</td>
</tr>
<tr>
<td>Split-winged moths,</td>
<td>141</td>
</tr>
<tr>
<td>Spotted-winged aphis,</td>
<td>166</td>
</tr>
<tr>
<td>Staties, Phleothrips,</td>
<td>206</td>
</tr>
<tr>
<td>Stem-eye, short horned,</td>
<td>69</td>
</tr>
<tr>
<td>" two-banded,</td>
<td>70</td>
</tr>
<tr>
<td>stigma, Chilocorus,</td>
<td>259</td>
</tr>
<tr>
<td>Stigma-marked lace-wing,</td>
<td>93</td>
</tr>
<tr>
<td>Stripe-backed Porcellio,</td>
<td>121</td>
</tr>
<tr>
<td>Striped cut-worm,</td>
<td>313</td>
</tr>
<tr>
<td>" lace-wing,</td>
<td>93</td>
</tr>
<tr>
<td>" Porcellio,</td>
<td>129</td>
</tr>
<tr>
<td>Stripped-horned golden-eye,</td>
<td>91</td>
</tr>
<tr>
<td>sub-bifasciata, Sphyracephala,</td>
<td>70</td>
</tr>
<tr>
<td>subgothica, Agrotis,</td>
<td>314</td>
</tr>
<tr>
<td>subsericea, Formica,</td>
<td>154</td>
</tr>
<tr>
<td>subspinosus, Macroductylus,</td>
<td>245</td>
</tr>
<tr>
<td>Sulphur golden-eye,</td>
<td>89</td>
</tr>
<tr>
<td>Superb cicada,</td>
<td>39</td>
</tr>
<tr>
<td>sylvatica, Chioscampa,</td>
<td>198</td>
</tr>
<tr>
<td>Syrphus-flies,</td>
<td>100, 158</td>
</tr>
<tr>
<td>tabellaria, Teplritis,</td>
<td>66</td>
</tr>
<tr>
<td>tabida, Chrysopa,</td>
<td>92</td>
</tr>
<tr>
<td>Tawny-striped palmer worm,</td>
<td>231</td>
</tr>
<tr>
<td>temnidaeactus, Pterophorus,</td>
<td>114</td>
</tr>
<tr>
<td>Tephritis Asteris,</td>
<td>66</td>
</tr>
<tr>
<td>" lettered,</td>
<td>66</td>
</tr>
<tr>
<td>" melliginis,</td>
<td>65</td>
</tr>
<tr>
<td>" tabellaria,</td>
<td>66</td>
</tr>
<tr>
<td>Tetanocera, Canadian,</td>
<td>68</td>
</tr>
<tr>
<td>Tetanocera, doted-winged,</td>
<td>68</td>
</tr>
<tr>
<td>" Saratoga,</td>
<td>68</td>
</tr>
<tr>
<td>Tetranecura genus,</td>
<td>7</td>
</tr>
<tr>
<td>Thick-legged Oscinis,</td>
<td>301</td>
</tr>
<tr>
<td>" snipping-beetle,</td>
<td>25</td>
</tr>
<tr>
<td>thoracica, Diopsis,</td>
<td>69</td>
</tr>
<tr>
<td>Thousand-legged worm,</td>
<td>117</td>
</tr>
<tr>
<td>Thread-horned golden-eye,</td>
<td>91</td>
</tr>
<tr>
<td>" like golden-eye,</td>
<td>91</td>
</tr>
<tr>
<td>Thrips, apple,</td>
<td>108</td>
</tr>
<tr>
<td>" three-banded,</td>
<td>308</td>
</tr>
<tr>
<td>" wheat,</td>
<td>310</td>
</tr>
<tr>
<td>Species/Species Group</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Tibialis, Oscinis</td>
<td>300</td>
</tr>
<tr>
<td>Tick, on ants</td>
<td>153</td>
</tr>
<tr>
<td>" beetles</td>
<td>153</td>
</tr>
<tr>
<td>Tiger Cerambyx</td>
<td>144</td>
</tr>
<tr>
<td>" -moth, Isabella</td>
<td>173</td>
</tr>
<tr>
<td>Tigrinus, Monohamnus</td>
<td>144</td>
</tr>
<tr>
<td>Tillie, Aphis</td>
<td>164</td>
</tr>
<tr>
<td>Tinea Zee</td>
<td>320</td>
</tr>
<tr>
<td>Timeformis, Coniopteryx</td>
<td>96</td>
</tr>
<tr>
<td>Titman lace-wing</td>
<td>96</td>
</tr>
<tr>
<td>Tometosus, Monohamnus</td>
<td>150</td>
</tr>
<tr>
<td>Tooth-legged snapping-beetle</td>
<td>29</td>
</tr>
<tr>
<td>Tortrix, shoulder-striped</td>
<td>241</td>
</tr>
<tr>
<td>" triangular-spotted</td>
<td>244</td>
</tr>
<tr>
<td>Trichogramma fraterna</td>
<td>217</td>
</tr>
<tr>
<td>" Orgyia</td>
<td>116</td>
</tr>
<tr>
<td>trifasciata, Calotheirips</td>
<td>209</td>
</tr>
<tr>
<td>trimaculata, Tephrithis</td>
<td>65</td>
</tr>
<tr>
<td>t rimaculatus, Chaeochilus</td>
<td>233</td>
</tr>
<tr>
<td>Trioxys Cerusaphis</td>
<td>138</td>
</tr>
<tr>
<td>" Populaphis</td>
<td>137</td>
</tr>
<tr>
<td>" Salicaphis</td>
<td>137</td>
</tr>
<tr>
<td>Triplicate-spotted moth</td>
<td>233</td>
</tr>
<tr>
<td>triquetrina, Brachytrena</td>
<td>244</td>
</tr>
<tr>
<td>Tritici, Agronomia</td>
<td>302</td>
</tr>
<tr>
<td>" Cecidomyia</td>
<td>77</td>
</tr>
<tr>
<td>Troublesome ant</td>
<td>127</td>
</tr>
<tr>
<td>Tussock-moth, hickory</td>
<td>159</td>
</tr>
<tr>
<td>tutattrix, Hemerobius</td>
<td>94</td>
</tr>
<tr>
<td>Two-banded stem-eye</td>
<td>70</td>
</tr>
<tr>
<td>Two-dotted golden-eye</td>
<td>87</td>
</tr>
<tr>
<td>Ulmi, Aphis</td>
<td>7</td>
</tr>
<tr>
<td>United-veined lace-wing</td>
<td>94</td>
</tr>
<tr>
<td>Unspotted Porello</td>
<td>120</td>
</tr>
<tr>
<td>Upsilon, Chrysopa</td>
<td>87</td>
</tr>
<tr>
<td>Uropoda Feminea</td>
<td>153</td>
</tr>
<tr>
<td>" vegetans</td>
<td>154</td>
</tr>
<tr>
<td>Vaporer moth, parasite</td>
<td>209</td>
</tr>
<tr>
<td>" Variegated Porello</td>
<td>216</td>
</tr>
<tr>
<td>" vegetans, Uropoda</td>
<td>154</td>
</tr>
<tr>
<td>Velleda, Planosa</td>
<td>267</td>
</tr>
<tr>
<td>ventrellus, Chaeochilus</td>
<td>284</td>
</tr>
<tr>
<td>Vespa maculata</td>
<td>62</td>
</tr>
<tr>
<td>Viburnaphis, Praon</td>
<td>137</td>
</tr>
<tr>
<td>Virginia golden-eye</td>
<td>91</td>
</tr>
<tr>
<td>Vittifolius, Pemphigus</td>
<td>158</td>
</tr>
<tr>
<td>vittatus, Hemerobius</td>
<td>83</td>
</tr>
<tr>
<td>" Porello</td>
<td>120</td>
</tr>
<tr>
<td>vulgaris, Chlorops</td>
<td>300</td>
</tr>
<tr>
<td>" Molobrus</td>
<td>255</td>
</tr>
<tr>
<td>Walnut ant,</td>
<td>151</td>
</tr>
<tr>
<td>" borer</td>
<td>146</td>
</tr>
<tr>
<td>Wasp, blue,</td>
<td>62</td>
</tr>
<tr>
<td>Weeping golden-eye</td>
<td>88</td>
</tr>
<tr>
<td>Weevil, elegant</td>
<td>158</td>
</tr>
<tr>
<td>" plum</td>
<td>166</td>
</tr>
<tr>
<td>Western lace-wing</td>
<td>95</td>
</tr>
<tr>
<td>Westwood's mealy-wing</td>
<td>98</td>
</tr>
<tr>
<td>Wheat-flies,</td>
<td>297</td>
</tr>
<tr>
<td>" -fly, deceiving</td>
<td>301</td>
</tr>
<tr>
<td>" similar</td>
<td>301</td>
</tr>
<tr>
<td>" midge</td>
<td>77</td>
</tr>
<tr>
<td>" -mow-fly</td>
<td>302</td>
</tr>
<tr>
<td>" Thrilps</td>
<td>304</td>
</tr>
<tr>
<td>White cut-worm</td>
<td>313</td>
</tr>
<tr>
<td>White-horned golden-eye</td>
<td>84</td>
</tr>
<tr>
<td>" -S moth</td>
<td>274</td>
</tr>
<tr>
<td>" -winged Lygaeus</td>
<td>292</td>
</tr>
<tr>
<td>Willow Aphidius</td>
<td>137</td>
</tr>
<tr>
<td>Wood-eating ants</td>
<td>152</td>
</tr>
<tr>
<td>Wood-lie</td>
<td>117</td>
</tr>
<tr>
<td>Woodpecker,</td>
<td>19, 150</td>
</tr>
<tr>
<td>Wood-tick</td>
<td>117</td>
</tr>
<tr>
<td>Woolly aphid, on apple</td>
<td>7, 50</td>
</tr>
<tr>
<td>" -hickory</td>
<td>166</td>
</tr>
<tr>
<td>Woolly Cerambyx</td>
<td>150</td>
</tr>
<tr>
<td>X-marked golden-eye</td>
<td>87</td>
</tr>
<tr>
<td>xanthocephala, Chrysopa</td>
<td>85</td>
</tr>
<tr>
<td>Xylocas domesticus</td>
<td>295</td>
</tr>
<tr>
<td>Y-marked golden-eye</td>
<td>87</td>
</tr>
<tr>
<td>Yellow-ant,</td>
<td>129</td>
</tr>
<tr>
<td>" -checked golden-eye</td>
<td>86</td>
</tr>
<tr>
<td>" -headed golden-eye</td>
<td>85</td>
</tr>
<tr>
<td>" -hipped Oscinis</td>
<td>301</td>
</tr>
<tr>
<td>" jacket hornet</td>
<td>62</td>
</tr>
<tr>
<td>" -necked apple-tree worm</td>
<td>235</td>
</tr>
<tr>
<td>Zee, Aphis,</td>
<td>319</td>
</tr>
<tr>
<td>" Tinea,</td>
<td>320</td>
</tr>
</tbody>
</table>