Complexity and Computation of 3D Delaunay Triangulations

Nina Amenta (UC-Davis)
Large inputs

Input point set, produce surface:

20,000 - 20,000,000
Large inputs

Input surface, produce tetrahedral mesh for finite element simulations; also medial axis.
Easily millions.

Shewchuk (98?)
3D Delaunay $O(n^2)$...

- $n/2$ points on each of two skew lines.
- Points on moment curve, etc.
- All examples distributed on 1D curve?
... but linear in practice.

Adding samples from surfaces in random order, \#tetrahedra grows linearly.

A & Choi, 01
Linear special cases

Dwyer 91 - Uniform random in ball (any constant dimension)

Erickson 02 - Nicely sampled solid, “spread” $O(n^{1/3})$

Golin & Na 00 - Uniform random on surface of convex polyhedron

Attali & Boissonnat 02 - Nicely sampled polyhedral surface
Sampling models

Consider behavior as $n \to \infty$.

Every point has a point within distance ε and no point within distance δ.

Every point has $1 \leq m \leq k$ samples within distance ε.
Almost linear

Golin & Na 02 - Uniform random on polyhedral surface, $O(n \log^4 n)$

Attali, Boissonnat & Lieuter 03 - Nice sampling, “generic” smooth surface S: singular points (with osculating maximal tangent balls) form a 1D set with fixed length, $O(n \lg n)$
Lower bounds

Jeff Erickson (by Howard Sun)
Given n, ϵ, can construct a surface and an ϵ–sample with $O(n^2\epsilon^2)$ triangulation.
Lower bounds

Helix with \sqrt{n} turns, \sqrt{n} samples per turn.

Fact (Erickson, Bochis & Santos): ball tangent to cylinder at 2 samples in same turn contains no other samples $\Rightarrow O(n^{3/2})$ Delaunay edges.
Conjecture: Nice distribution of samples from surface of co-dimension c has Delaunay triangulation of complexity $O(n^{(c/2) + 1})$?

Compute only “in-manifold” linear part?
Randomized incremental algorithm

Add points one by one in random order, update triangulation with flips. Simple, optimal (worst-case expected time).
Implementations

delcx - Edelsbrunner, Muecke, Facello
92,96

hull - Clarkson 96

CGAL Delaunay hierarchy - Devillers, Teillaud, Pion 01

pyramid - Shewchuk, unreleased
Memory usage

Performs great...until!
Point location strategies

Theoretical bottleneck.

$O(\log n)$ per location possible with search data structure, but is it worth the effort in practice?

CGAL, hull - data structures
delcx, pyramid - no data structures
Idea

Blelloch, Blandford, Cardoze, Kadow 03

Compress representation of DT, while allowing updates.
Representation

List vertex indecies around each edge (with tricks to reduce redundancy).
Representation

16

16

Use difference coding so each index is just a few bits.

-2

(= 14)
Assigning indices

Use kd-tree to assign similar indices to points (hopefully) near each other in Delaunay triangulation.
Data structures

- Vertices: n vertices, 1 byte each, hash(index, byte) -> index
- Edges: 2 bytes for each edge
Data structures

edge

offsets to surrounding vertices
Compression results

50min

2 GiG, 2.4 GHz

100M tets = 10M pts
Idea

Partially randomized insertion order

- increase locality of reference, especially as data structure gets large

- retain enough randomness to guarantee optimality
Biased Randomized Insertion Order (BRIO)

(A, Choi, Rote, 03)

• Choose each point with prob = 1/2.
• Insert chosen points recursively con BRIO.
• Insert the remaining points in arbitrary order.
BRIO

log \(n \) rounds of insertion

round \(\log n \)
round \(\log n - 1 \)
round \(\log n - 2 \)
round 0
Analysis

Randomness has two benefits:

• Bound total number of tetrahedra

• Bound time required for locating new points in triangulation
Analysis

Adapted from Clarkson and Shor, Mulmuley

• triggers
• stoppers
Triggers and stoppers

A tetrahedron appears during construction if all its triggers are inserted before any of its stoppers.
Probability \text{ tet appears } \leq P[\text{the round where all triggers are chosen is } \\
\leq \text{the first round where any stopper is chosen}] \\
= P[\text{s+4 random numbers, the first } 4 \leq \text{ others}] \\
= O(1/s^4)

Analysis of optimality goes through directly.
Experiments - pyramid

Point location: “walk” from last inserted point.

Multiple “Happy buddha”. 4096 kd-cells.

360 MHz, 128 M RAM, 4 GB Virtual memory
Pyramid

10 million points on tiny machine

1/2 hour on reasonable machine
CGAL insertion strategies

Thanks to Monique Teillaud and Ian Bowman.
Conclusion

Think of 3D Delaunay triangulation as essentially linear time, fairly efficient.

Really independent subproblems would help.